Connect with us

Health

Antigenic cartography decodes the mysteries of SARS-CoV-2 variants and vaccines

Antigenic cartography decodes the mysteries of SARS-CoV-2 variants and vaccines

 


In a recent study published in the journal Science, a group of researchers utilized antigenic cartography to study cross-reactivity patterns among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)  variants and evaluated the impact of key spike-protein substitutions on immune responses post-infection and vaccination.

Study: Mapping SARS-CoV-2 antigenic relationships and serological responses. Image Credit: felipe caparros / ShutterstockStudy: Mapping SARS-CoV-2 antigenic relationships and serological responses. Image Credit: felipe caparros / Shutterstock

Background 

Since the onset of the SARS-CoV-2 pandemic, diverse variants have emerged, with over 766 million cases and 6.9 million fatalities. The initial B.1 variant, characterized by the D614G mutation, did not escape serum neutralization. However, variants like Alpha, Beta, Gamma, Delta, and Omicron, dubbed “variants of concern” by the World Health Organization (WHO), have presented challenges to vaccine and treatment efficacy. As these antigenic variations have grown, they have complicated neutralization processes. Further research is essential due to the continuous emergence and circulation of diverse SARS-CoV-2 variants that present varying degrees of immune escape, complicating our understanding of antigenic relationships and necessitating the optimization of vaccine strategies for enhanced protection.

About the study

During clinical trials, all study samples were collected, including those from vaccine recipients. Convalescent sera, assumed to be from first infections, were sequenced for variant identification. All study sites had Institutional Review Board (IRB) approval, and participants gave informed consent.

Several post-vaccination samples stemmed from the mRNA-1273 phase 1 study and the Coronavirus Efficacy (COVE) phase 3 trial. Samples from the >3 months post 2× mRNA-1273 group were from individuals who received two initial shots and a booster. With no record of prior SARS-CoV-2 infection, these individuals contributed to the >3 months post 3× mRNA-1273 samples, which were part of a specific clinical trial. Meanwhile, samples taken 4 weeks post 2× mRNA-1273.351 originated from another clinical trial cohort.

Neutralization was gaged using a lentiviral pseudotyped virus assay. In evaluating titer levels, researchers identified deviations from expected patterns, applied specific criteria, and devised a method to estimate Geometric Mean Titers (GMT) accurately.

Antigenic cartography, using the Racmacs package, aimed to elucidate the antigenic evolution of pathogens. Validations confirmed that the two-dimensional (2D) map fairly represented variant relationships. Through cross-validation replicates, it was determined that the 2D map had a commendable predictive capacity, albeit not perfect. Constructing antibody landscapes, the methodology showcased reactivity’s cone-like variation in the antigenic space, offering a unique visualization of the antigenic map.

Study results 

Researchers analyzed 207 serum samples from vaccinated and infected individuals to understand neutralization patterns against 21 SARS-CoV-2 variants using a Food and Drug Administration (FDA)–approved method. The samples covered people infected with various virus variants and those vaccinated at diverse intervals. Unique neutralization profiles emerged, with Omicron variants particularly showing significant neutralization escape post multiple messenger ribonucleic acid (mRNA)-1273 vaccinations.

Analysis of the GMT from 183 serum samples showed distinct reactivity patterns. The B.1.351 and P.1 serum groups exhibited comparable neutralization profiles, hinting at analogous virus structures. Omicron variants, especially BA.4/BA.5, demonstrated varied neutralization outcomes, with some diminished efficiency even after a third mRNA-1273 dose.

Researchers visualized antigenic relationships in two-dimensional maps, however, the distinctiveness of BA.4/BA.5 required a three-dimensional representation, hinting at a unique antigenic space. This three-dimensional antibody landscape illuminated the varied serum reactivity across different SARS-CoV-2 strains. For instance, B.1.617.2 sera reacted more robustly against its corresponding variant.

Furthermore, post-vaccination landscapes of mRNA-1273 sera highlighted varying cross-reactivity dependent on vaccination timing. Reactivity breadth notably expanded post multiple mRNA-1273 doses, suggesting an evolving defense mechanism with repeated immunizations.

In detailed mapping, variants’ positions connected to shared amino acid changes among pre-Omicron strains. For example, variants modified at position 484 appeared on the map’s right due to reduced neutralization. Variants at the top, like B.1.1.7 and B.1.351, had a substitution at position 501. B.1.351 and P.1 had changes at position 417, and the lower half variants had substitutions at position 452. Omicron variants, with over 15 Receptor Binding Domain (RBD) changes, clustered distinctly.

To understand these antigenic shifts, 10 lentiviral pseudotypes with singular substitutions were created. Their antigenic effects typically matched the patterns on the wild-type variant map. Position 484 showcased pronounced antigenic shifts, while position 417 had nuanced changes. The sole N501Y alteration did not significantly adjust the antigenic map.

In-depth assessments revealed serum sensitivities when variants only differed at positions 484 or 501. For instance, BA.1 serum responses veered away from the 484 position. Sensitivities at position 501 are related to the specific amino acid in the infecting variant. K417N substitutions revealed unique serum reactivity patterns, possibly hinting at structural similarities. In contrast, most serum groups could discern variants differing only by the L452R change.

Lastly, the study examined the impact of alterations in the N-terminal domain (NTD). Generally, single amino acid shifts in the RBD were unaffected by concurrent NTD changes. However, mutants like B.1.351+N417K differed notably from other viruses with similar RBD structures.

Sources

1/ https://Google.com/

2/ https://www.news-medical.net/news/20231008/Antigenic-cartography-decodes-the-mysteries-of-SARS-CoV-2-variants-and-vaccines.aspx

The mention sources can contact us to remove/changing this article

What Are The Main Benefits Of Comparing Car Insurance Quotes Online

LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

ExBUlletin

to request, modification Contact us at Here or [email protected]