Connect with us

Health

Study unravels role of a protein in osteoclast generation

 


Chronic bone and joint diseases, such as osteoporosis and rheumatoid arthritis, affect millions of people worldwide, particularly the elderly, degrading their quality of life. An important factor in both of these diseases is the excessive activity of bone-dissolving cells called osteoclasts. Osteoclasts are formed through differentiation from a certain type of immune cell called macrophage, after which they acquire their new role in the maintenance of bones and joints: breaking down bone tissue to allow osteoblasts-another type of cell-to repair and remodel the skeletal system.

Broadly, two intracellular processes are involved in this differentiation: first, transcription-in which a messenger RNA (mRNA) is created from the genetic information in DNA-and then, translation-in which the information in the mRNA is decoded to produce proteins that perform specific functions in the cell. Since the discovery of the role of a particular protein called RANKL in osteoclast formation, scientists have solved a considerable portion of the puzzle of which cell signaling pathways and transcription networks regulate osteoclast generation. Yet, the post-transcription cellular processes involved remain to be understood.

Now, in a new study published in Biochemical and Biophysical Research Communications, scientists at Tokyo University of Science, Japan, unraveled the role of a protein called Cpeb4 in this complex process. Cpeb4 is part of the “cytoplasmic polyadenylation element binding (CPEB)” family of proteins, which bind to RNA and regulate translational activation and repression, as well as “alternative splicing” mechanisms that produce protein variants. Dr Tadayoshi Hayata, who led the study, explains: “CPEB proteins are implicated in various biological processes and diseases, such as autism, cancer, and red blood cell differentiation. However, their functions in osteoclast differentiation are not clearly known. Therefore, we conducted a series of experiments to characterize a protein from this family, Cpeb4, using cell cultures of mouse macrophages.”

In the various cell culture experiments conducted, mouse macrophages were stimulated with RANKL to trigger osteoclast differentiation and the evolution of the culture was monitored. First, the scientists found that Cpeb4 gene expression, and consequently the amount of Cpeb4 protein, increased during osteoclast differentiation. Then, through immunofluorescence microscopy, they visualized the changes in the location of Cpeb4 within the cells. They found that Cpeb4 moves from the cytoplasm into nuclei, while presenting specific shapes (osteoclasts tend to fuse together and form cells with multiple nuclei). This indicates that the function of Cpeb4 associated with osteoclast differentiation is likely carried out inside the nuclei.

To understand how RANKL stimulation causes this Cpeb4 relocalization, the scientists selectively “inhibited” or represses some of the proteins that become involved “downstream” in the intracellular signaling pathways triggered by the stimulation. They identified two pathways as necessary for the process. Nonetheless, further experiments will be required to fully learn about the sequence of events that takes place and all the proteins involved.

Finally, Dr Hayata and his team demonstrated that Cpeb4 is absolutely necessary for osteoclast formation using macrophage cultures in which Cpeb4 was actively depleted. The cells in these cultures did not undergo further differentiation to become osteoclasts.

Taken together, the results are a stepping stone to understanding the cellular mechanisms involved in osteoclast formation. Dr Hayata remarks: “Our study sheds light on the important role of the RNA-binding protein Cpeb4 as a positive “influencer” of osteoclast differentiation. This gives us a better understanding of the pathological conditions of bone and joint diseases and may contribute to the development of therapeutic strategies for major diseases like osteoporosis and rheumatoid arthritis.” Hopefully, the deeper level of understanding of osteoclast generation facilitated by this study will ultimately translate into improved quality of life for people living with painful bone and joint diseases.

Source:

Journal reference:

Arasaki, Y., et al. (2020) The RNA-binding protein Cpeb4 is a novel positive regulator of osteoclast differentiation. Biochemical and Biophysical Research Communications. doi.org/10.1016/j.bbrc.2020.05.089.

.

What Are The Main Benefits Of Comparing Car Insurance Quotes Online

LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos



Pictures Credit

ExBUlletin

to request, modification Contact us at Here or [email protected]