Connect with us

Health

Differing coronavirus genres alter shared host signaling pathways upon viral infection

Differing coronavirus genres alter shared host signaling pathways upon viral infection

 


  • Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192. https://doi.org/10.1038/s41579-018-0118-9 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Peiris, J. S. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325. https://doi.org/10.1016/s0140-6736(03)13077-2 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Docea, A. O. et al. A new threat from an old enemy: Reemergence of coronavirus (Review). Int. J. Mol. Med. 45, 1631–1643. https://doi.org/10.3892/ijmm.2020.4555 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stadler, K. et al. SARS–beginning to understand a new virus. Nat. Rev. Microbiol. 1, 209–218. https://doi.org/10.1038/nrmicro775 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wise, J. Patient with new strain of coronavirus is treated in intensive care at London hospital. BMJ 345, e6455. https://doi.org/10.1136/bmj.e6455 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • (WHO), W. H. O. A Report About Coronavirus Disease (COVID-19). World Health Organization: (2022).

  • Goujon, C. et al. Bidirectional genome-wide CRISPR screens reveal host factors regulating SARS-CoV-2, MERS-CoV and seasonal HCoVs. Res. Sq https://doi.org/10.21203/rs.3.rs-555275/v1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brian, D. A. & Baric, R. S. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287, 1–30. https://doi.org/10.1007/3-540-26765-4_1 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • ICTV. Positive Sense RNA Viruses (2011). ICTV reports (2011).

  • Wang, N. et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 23, 986–993. https://doi.org/10.1038/cr.2013.92 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lednicky, J. A. et al. Independent infections of porcine deltacoronavirus among Haitian children. Nature 600, 133–137. https://doi.org/10.1038/s41586-021-04111-z (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc. Natl. Acad. Sci. U.S.A 115, E5135–E5143. https://doi.org/10.1073/pnas.1802879115 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlasova, A. N., Kenney, S. P., Jung, K., Wang, Q. & Saif, L. J. Deltacoronavirus evolution and transmission: Current scenario and evolutionary perspectives. Front. Vet. Sci. 7, 626785. https://doi.org/10.3389/fvets.2020.626785 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Woo, P. C. et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. J. Virol. 88, 1318–1331. https://doi.org/10.1128/JVI.02351-13 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q., Vlasova, A. N., Kenney, S. P. & Saif, L. J. Emerging and re-emerging coronaviruses in pigs. Curr. Opin. Virol. 34, 39–49. https://doi.org/10.1016/j.coviro.2018.12.001 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258. https://doi.org/10.1038/s41586-018-0010-9 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, P. C. et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008. https://doi.org/10.1128/JVI.06540-11JVI.06540-11 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, K., Saif, L. J. & Wang, Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 286, 198045. https://doi.org/10.1016/j.virusres.2020.198045 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, E. & Lee, C. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet. Microbiol. 144, 41–50. https://doi.org/10.1016/j.vetmic.2009.12.024 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. RNA-seq-based whole transcriptome analysis of IPEC-J2 cells during swine acute diarrhea syndrome coronavirus infection. Front. Vet. Sci. 7, 492. https://doi.org/10.3389/fvets.2020.00492 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnamoorthy, P., Raj, A. S., Roy, S., Kumar, N. S. & Kumar, H. Comparative transcriptome analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug repurposing. Comput. Biol. Med. 128, 104123. https://doi.org/10.1016/j.compbiomed.2020.104123 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hu, Z. et al. Transcriptome analysis reveals modulation of the STAT family in PEDV-infected IPEC-J2 cells. BMC Genom. 21, 891. https://doi.org/10.1186/s12864-020-07306-2 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Song, L. et al. Differential transcriptomics analysis of IPEC-J2 cells single or coinfected with porcine epidemic diarrhea virus and transmissible gastroenteritis virus. Front. Immunol. 13, 844657. https://doi.org/10.3389/fimmu.2022.844657 (2022).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Genome-wide analysis of differentially expressed genes and the modulation of PEDV infection in Vero E6 cells. Microb. Pathog. 117, 247–254. https://doi.org/10.1016/j.micpath.2018.02.004 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, S. et al. Transcriptional landscape of vero E6 cells during early swine acute diarrhea syndrome coronavirus infection. Viruses https://doi.org/10.3390/v13040674 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, N. et al. Transcriptomic profiling and genomic mutational analysis of Human coronavirus (HCoV)-229E -infected human cells. PLoS ONE 16, e0247128. https://doi.org/10.1371/journal.pone.0247128 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045. https://doi.org/10.1016/j.cell.2020.04.026 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. et al. Comparative transcriptome analysis reveals the intensive early stage responses of host cells to SARS-CoV-2 infection. Front. Microbiol. 11, 593857. https://doi.org/10.3389/fmicb.2020.593857 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, S. et al. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat. Commun. 10, 120. https://doi.org/10.1038/s41467-018-08015-x (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshikawa, T. et al. Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection. PLoS ONE 5, e8729. https://doi.org/10.1371/journal.pone.0008729 (2010).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz-Pulido, D. et al. Comparative transcriptome profiling of human and pig intestinal epithelial cells after porcine deltacoronavirus infection. Viruses https://doi.org/10.3390/v13020292 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Comprehensive genomic characterization analysis of lncRNAs in cells with porcine delta coronavirus infection. Front. Microbiol. 10, 3036. https://doi.org/10.3389/fmicb.2019.03036 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, R., Jung, J. S., Yeo, J. I., Kwon, H. M. & Park, J. Transcriptome analysis of primary chicken cells infected with infectious bronchitis virus strain K047–12 isolated in Korea. Arch. Virol. 166, 2291–2298. https://doi.org/10.1007/s00705-021-05124-9 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coden, M. E., Loffredo, L. F., Abdala-Valencia, H. & Berdnikovs, S. Comparative study of SARS-CoV-2, SARS-CoV-1, MERS-CoV, HCoV-229E and influenza host gene expression in asthma: Importance of sex, disease severity, and epithelial heterogeneity. Viruses https://doi.org/10.3390/v13061081 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsamman, A. M. & Zayed, H. The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1. PLoS ONE 15, e0243270. https://doi.org/10.1371/journal.pone.0243270 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, S. et al. Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinf. 22, 287. https://doi.org/10.1186/s12859-021-04197-2 (2021).

    Article 

    Google Scholar
     

  • Liu, X. et al. Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biol. 18, 4. https://doi.org/10.1186/s13059-016-1137-3 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herberg, J. A. et al. Transcriptomic profiling in childhood H1N1/09 influenza reveals reduced expression of protein synthesis genes. J. Infect. Dis. 208, 1664–1668. https://doi.org/10.1093/infdis/jit348jit348[pii] (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bermejo-Martin, J. F. et al. Host adaptive immunity deficiency in severe pandemic influenza. Crit. Care 14, R167. https://doi.org/10.1186/cc9259cc9259[pii] (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tumurgan, Z. et al. Roles of intracerebral activin, inhibin, and follistatin in the regulation of Kiss-1 gene expression: Studies using primary cultures of fetal rat neuronal cells. Biochem. Biophys. Rep. 23, 100785. https://doi.org/10.1016/j.bbrep.2020.100785 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soni, S., Anand, P. & Padwad, Y. S. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. J. Exp. Clin. Cancer Res. 38, 121. https://doi.org/10.1186/s13046-019-1115-1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohanta, T. K., Sharma, N., Arina, P. & Defilippi, P. Molecular insights into the MAPK cascade during viral infection: Potential crosstalk between HCQ and HCQ analogues. Biomed. Res. Int. 2020, 8827752. https://doi.org/10.1155/2020/8827752 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aung-Htut, M. T. et al. Reduction of integrin alpha 4 activity through splice modulating antisense oligonucleotides. Sci. Rep. 9, 12994. https://doi.org/10.1038/s41598-019-49385-6 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrhardt, C. From virus entry to release: The diverse functions of PI3K during RNA virus infections. Futur. Virol. 6, 1225–1239. https://doi.org/10.2217/fvl.11.90 (2011).

    CAS 
    Article 

    Google Scholar
     

  • De Toma, I. & Dierssen, M. Network analysis of Down syndrome and SARS-CoV-2 identifies risk and protective factors for COVID-19. Sci. Rep. 11, 1930. https://doi.org/10.1038/s41598-021-81451-w (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircheis, R. et al. NF-kappaB pathway as a potential target for treatment of critical stage COVID-19 patients. Front. Immunol. 11, 598444. https://doi.org/10.3389/fimmu.2020.598444 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohn, K. M. et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J. Korean Med. Sci. 35, e343. https://doi.org/10.3346/jkms.2020.35.e34335.e343[pii] (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, K. et al. The novel roles of virus infection-associated gene CDKN1A in chemoresistance and immune infiltration of glioblastoma. Aging (Albany NY) 13, 6662–6680. https://doi.org/10.18632/aging.202519202519[pii] (2021).

    CAS 
    Article 

    Google Scholar
     

  • Yu, H., Lin, L., Zhang, Z., Zhang, H. & Hu, H. Targeting NF-kappaB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct. Target Ther. 5, 209. https://doi.org/10.1038/s41392-020-00312-6 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. H., Tang, Y., Niu, X. & Cheng, Q. Expression and gene regulation network of INHBA in Head and neck squamous cell carcinoma based on data mining. Sci. Rep. 9, 14341. https://doi.org/10.1038/s41598-019-50865-y (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, X. et al. Cell type-specific function of TRAF2 and TRAF3 in regulating type I IFN induction. Cell Biosci. 9, 5. https://doi.org/10.1186/s13578-018-0268-5268[pii] (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etemadi, N. et al. TRAF2 regulates TNF and NF-kappaB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. Elife https://doi.org/10.7554/eLife.10592 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basagoudanavar, S. H. et al. Distinct roles for the NF-kappa B RelA subunit during antiviral innate immune responses. J. Virol. 85, 2599–2610. https://doi.org/10.1128/JVI.02213-10 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruta, H. & He, H. PAK1-blockers: Potential therapeutics against COVID-19. Med. Drug Discov. 6, 100039. https://doi.org/10.1016/j.medidd.2020.100039 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouka, E. Hypothesis: Is there a link between the immune response to Human Herpes Virus type 6Alpha (HHV-6Alpha) infection and the interaction network (interactome) of the genes encoding the CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3 and BST2 proteins?. Med. Hypotheses 112, 47–50. https://doi.org/10.1016/j.mehy.2018.01.011 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rodrigue-Gervais, I. G. et al. Cellular inhibitor of apoptosis protein cIAP2 protects against pulmonary tissue necrosis during influenza virus infection to promote host survival. Cell Host Microbe 15, 23–35. https://doi.org/10.1016/j.chom.2013.12.003 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schmid, S., Sachs, D. & Tenoever, B. R. Mitogen-activated protein kinase-mediated licensing of interferon regulatory factor 3/7 reinforces the cell response to virus. J. Biol. Chem. 289, 299–311. https://doi.org/10.1074/jbc.M113.519934 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Valaperti, A. et al. Innate immune interleukin-1 receptor-associated kinase 4 exacerbates viral myocarditis by reducing CCR5(+) CD11b(+) monocyte migration and impairing interferon production. Circulation 128, 1542–1554. https://doi.org/10.1161/CIRCULATIONAHA.113.002275 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Picard, C., Casanova, J. L. & Puel, A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin. Microbiol. Rev. 24, 490–497. https://doi.org/10.1128/CMR.00001-1124/3/490[pii] (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hertzog, P. J., Fenner, J. E. & Mansell, A. Chapter 5 – signaling molecules affecting immune response. In Measuring Immunity 62–79 (Academic Press, Cambridge, 2005).

    Chapter 

    Google Scholar
     

  • Esteban, L. M. et al. Ras-guanine nucleotide exchange factor sos2 is dispensable for mouse growth and development. Mol. Cell Biol. 20, 6410–6413. https://doi.org/10.1128/MCB.20.17.6410-6413.2000 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baltanas, F. C., Garcia-Navas, R. & Santos, E. SOS2 comes to the fore: Differential functionalities in physiology and pathology. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22126613 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wiedemann, G. M. et al. Divergent role for STAT5 in the adaptive responses of natural killer cells. Cell Rep 33, 108498. https://doi.org/10.1016/j.celrep.2020.108498 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carow, B. & Rottenberg, M. E. SOCS3, a major regulator of infection and inflammation. Front. Immunol. 5, 58. https://doi.org/10.3389/fimmu.2014.00058 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oshiumi, H. et al. The TLR3/TICAM-1 pathway is mandatory for innate immune responses to poliovirus infection. J. Immunol. 187, 5320–5327. https://doi.org/10.4049/jimmunol.1101503 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Struzik, J. & Szulc-Dabrowska, L. Manipulation of Non-canonical NF-kappaB signaling by non-oncogenic viruses. Arch. Immunol. Ther. Exp. (Warsz) 67, 41–48. https://doi.org/10.1007/s00005-018-0522-x1 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Irving, A. T., Ahn, M., Goh, G., Anderson, D. E. & Wang, L. F. Lessons from the host defences of bats, a unique viral reservoir. Nature 589, 363–370. https://doi.org/10.1038/s41586-020-03128-0 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jiang, S. et al. Transcriptome analysis of PK-15 cells in innate immune response to porcine deltacoronavirus infection. PLoS ONE 14, e0223177. https://doi.org/10.1371/journal.pone.0223177 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mair, K. H. et al. The porcine innate immune system: An update. Dev. Comp. Immunol. 45, 321–343. https://doi.org/10.1016/j.dci.2014.03.022 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mudd, P. A. et al. Targeted immunosuppression distinguishes COVID-19 from influenza in moderate and severe disease. medRxiv https://doi.org/10.1101/2020.05.28.20115667 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemmat, N. et al. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch. Virol. 166, 675–696. https://doi.org/10.1007/s00705-021-04958-7 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Whittaker, G. R. SARS-CoV-2 spike and its adaptable furin cleavage site. Lancet Microbe 2, e488–e489. https://doi.org/10.1016/S2666-5247(21)00174-9 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buggele, W. A., Johnson, K. E. & Horvath, C. M. Influenza A virus infection of human respiratory cells induces primary microRNA expression. J. Biol. Chem. 287, 31027–31040. https://doi.org/10.1074/jbc.M112.387670 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. Role of MAPK/MNK1 signaling in virus replication. Virus Res. 253, 48–61. https://doi.org/10.1016/j.virusres.2018.05.028 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, W. et al. Suppression of Rac1 signaling by influenza a virus NS1 facilitates viral replication. Sci. Rep. 6, 35041. https://doi.org/10.1038/srep35041 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. L. et al. Roles of small GTPase Rac1 in the regulation of actin cytoskeleton during dengue virus infection. PLoS Negl. Trop. Dis. https://doi.org/10.1371/journal.pntd.0000809 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanlioglu, S. et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J. Virol. 74, 9184–9196. https://doi.org/10.1128/jvi.74.19.9184-9196.2000 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhattacharya, S., Roxbury, D., Gong, X., Mukhopadhyay, D. & Jagota, A. DNA conjugated SWCNTs enter endothelial cells via Rac1 mediated macropinocytosis. Nano Lett. 12, 1826–1830. https://doi.org/10.1021/nl204058u (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrhardt, C. et al. Rac1 and PAK1 are upstream of IKK-epsilon and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett. 567, 230–238. https://doi.org/10.1016/j.febslet.2004.04.069 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • McArdle, J., Schafer, X. L. & Munger, J. Inhibition of calmodulin-dependent kinase kinase blocks human cytomegalovirus-induced glycolytic activation and severely attenuates production of viral progeny. J. Virol. 85, 705–714. https://doi.org/10.1128/JVI.01557-10 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Blanco-Melo, D. N.-P., B.; Wen-Chun, L.; Moller, R.; Panis, M.; Sachs, D.; Albrecht, R. SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems. Preprint at https://www.biorxiv.org/content/https://doi.org/10.1101/2020.03.24.004655v1, doi:https://doi.org/10.1101/2020.03.24.004655 (2020).

  • Babraham. FastQC: A quality control tool for high throughput sequence data [Online]. (2015).

  • Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. United States [Online]. (2014).

  • Chen, Y., Lun, A. T. & Smyth, G. K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res 5, 1438. https://doi.org/10.12688/f1000research.8987.2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25. https://doi.org/10.1186/gb-2010-11-3-r25 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16, 284–287. https://doi.org/10.1089/omi.2011.0118 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics 10, 161, https://doi.org/10.1186/1471-2105-10-161 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. https://doi.org/10.1038/nprot.2008.211 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426. https://doi.org/10.1093/nar/gky10385165346[pii] (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831,
    https://doi.org/10.1093/bioinformatics/btt285 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VIB. Calculate and draw custom Venn diagrams [Online].

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-022-13396-7

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]