Connect with us

Health

SARS-CoV-2 pneumonia and bacterial pneumonia patients differ in a second hit immune response model

SARS-CoV-2 pneumonia and bacterial pneumonia patients differ in a second hit immune response model

 


  • Delano, M. J. & Ward, P. A. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol. Rev. 274, 330–353. https://doi.org/10.1111/imr.12499 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Vught, L. A. et al. Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis. JAMA 315, 1469–1479. https://doi.org/10.1001/jama.2016.2691 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jia, L. et al. Mechanisms of severe mortality-associated bacterial co-infections following influenza virus infection. Front. Cell. Infect. Microbiol. 7, 338. https://doi.org/10.3389/fcimb.2017.00338 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Y. M., Xu, G., Wang, B. & Liu, B. C. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J. Intern. Med. 289, 147–161. https://doi.org/10.1111/joim.13144 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R. & Salem, R. The COVID-19 cytokine storm; What we know so far. Front. Immunol. 11, 1446. https://doi.org/10.3389/fimmu.2020.01446 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, B., Huang, S. & Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 93, 250–256. https://doi.org/10.1002/jmv.26232 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 130, 2620–2629. https://doi.org/10.1172/jci137244 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moser, D. et al. COVID-19 impairs immune response to Candida albicans. Front. Immunol. 12, 640644. https://doi.org/10.3389/fimmu.2021.640644 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feuerecker, M. et al. Early immune anergy towards recall antigens and mitogens in patients at onset of septic shock. Sci. Rep. 8, 1754. https://doi.org/10.1038/s41598-018-19976-w (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, R. K. & Burns, B. StatPearls (StatPearls Publishing Copyright © 2021 (StatPearls Publishing LLC, 2021).


    Google Scholar
     

  • Assinger, A., Schrottmaier, W. C., Salzmann, M. & Rayes, J. Platelets in sepsis: An update on models and clinical data. Front. Immunol. 10, 1687. https://doi.org/10.3389/fimmu.2019.01687 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unsinger, J. et al. Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal sepsis. J. Infect. Dis. 206, 606–616. https://doi.org/10.1093/infdis/jis383 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamers, L., Kox, M. & Pickkers, P. Sepsis-induced immunoparalysis: Mechanisms, markers, and treatment options. Minerva Anestesiol. 81, 426–439 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, J. G. et al. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight https://doi.org/10.1172/jci.insight.140289 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, S. R. et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: Development and validation of the 4C Mortality Score. BMJ 370, m3339. https://doi.org/10.1136/bmj.m3339 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Otsuka, R. & Seino, K. I. Macrophage activation syndrome and COVID-19. Inflamm. Regener. 40, 19. https://doi.org/10.1186/s41232-020-00131-w (2020).

    CAS 
    Article 

    Google Scholar
     

  • Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273. https://doi.org/10.1056/NEJMra2026131 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotchkiss, R. S., Monneret, G. & Payen, D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 13, 260–268. https://doi.org/10.1016/s1473-3099(13)70001-x (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimmelé, T. et al. Immune cell phenotype and function in sepsis. Shock 45, 282–291. https://doi.org/10.1097/shk.0000000000000495 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGonagle, D., Sharif, K., O’Regan, A. & Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev. 19, 102537. https://doi.org/10.1016/j.autrev.2020.102537 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cicco, S., Cicco, G., Racanelli, V. & Vacca, A. Neutrophil extracellular traps (NETs) and damage-associated molecular patterns (DAMPs): Two potential targets for COVID-19 treatment. Mediat. Inflamm. 2020, 7527953. https://doi.org/10.1155/2020/7527953 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Mishra, K. P., Singh, A. K. & Singh, S. B. Hyperinflammation and immune response generation in COVID-19. NeuroImmunoModulation 27, 80–86. https://doi.org/10.1159/000513198 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Tolle, L. B. & Standiford, T. J. Danger-associated molecular patterns (DAMPs) in acute lung injury. J. Pathol. 229, 145–156. https://doi.org/10.1002/path.4124 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Jimeno, S. et al. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. Eur. J. Clin. Invest. 51, e13404. https://doi.org/10.1111/eci.13404 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Effect of combination antiviral therapy on hematological profiles in 151 adults hospitalized with severe coronavirus disease 2019. Pharmacol. Res. 160, 105036. https://doi.org/10.1016/j.phrs.2020.105036 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, H. et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microb. Infect. 9, 1123–1130. https://doi.org/10.1080/22221751.2020.1770129 (2020).

    CAS 
    Article 

    Google Scholar
     

  • De Biasi, S. et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat. Commun. 11, 3434. https://doi.org/10.1038/s41467-020-17292-4 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trouillet-Assant, S. et al. Type I IFN immunoprofiling in COVID-19 patients. J. Allergy Clin. Immunol. 146, 206-208.e202. https://doi.org/10.1016/j.jaci.2020.04.029 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury, M. A., Hossain, N., Kashem, M. A., Shahid, M. A. & Alam, A. Immune response in COVID-19: A review. J. Infect. Public Health 13, 1619–1629. https://doi.org/10.1016/j.jiph.2020.07.001 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta, P. et al. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: Challenges and opportunities. Lancet Respir. Med. 8, 822–830. https://doi.org/10.1016/s2213-2600(20)30267-8 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Remy, K. E. et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight https://doi.org/10.1172/jci.insight.140329 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langford, B. J. et al. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 26, 1622–1629. https://doi.org/10.1016/j.cmi.2020.07.016 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. P., Adhi, F. & Highland, K. Recognition and management of respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19. Clevel. Clin. J. Med. 87, 659–663. https://doi.org/10.3949/ccjm.87a.ccc015 (2020).

    Article 

    Google Scholar
     

  • Rawson, T. M. et al. Bacterial and fungal coinfection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Microbiol. Infect. 71, 2459–2468. https://doi.org/10.1093/cid/ciaa530 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Garcia-Vidal, C. et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 27, 83–88. https://doi.org/10.1016/j.cmi.2020.07.041 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fekkar, A. et al. Occurrence of invasive pulmonary fungal infections in patients with severe COVID-19 admitted to the ICU. Am. J. Respir. Crit. Care Med. 203, 307–317. https://doi.org/10.1164/rccm.202009-3400OC (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maes, M. et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit. Care https://doi.org/10.1186/s13054-021-03460-5 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickens, C. O. et al. Bacterial superinfection pneumonia in patients mechanically ventilated for COVID-19 pneumonia. Am. J. Respir. Crit. Care Med. 204, 921–932. https://doi.org/10.1164/rccm.202106-1354OC (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouzé, A. et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intens. Care Med. 47, 188–198. https://doi.org/10.1007/s00134-020-06323-9 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Grasselli, G. et al. Hospital-acquired infections in critically Ill patients With COVID-19. Chest 160, 454–465. https://doi.org/10.1016/j.chest.2021.04.002 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rawson, T. M., Wilson, R. C. & Holmes, A. Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 27, 9–11. https://doi.org/10.1016/j.cmi.2020.09.025 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Secondary bloodstream infection in critically ill patients with COVID-19. J. Int. Med. Res. 49, 3000605211062783. https://doi.org/10.1177/03000605211062783 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Copin, M. C., Parmentier, E., Duburcq, T., Poissy, J. & Mathieu, D. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intens. Care Med. 46, 1124–1126. https://doi.org/10.1007/s00134-020-06057-8 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383, 120–128. https://doi.org/10.1056/NEJMoa2015432 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arastehfar, A. et al. COVID-19 associated pulmonary aspergillosis (CAPA)-from immunology to treatment. J. Fungi 6, 91. https://doi.org/10.3390/jof6020091 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Koehler, P. et al. COVID-19 associated pulmonary aspergillosis. Mycoses 63, 528–534. https://doi.org/10.1111/myc.13096 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, C. C. & Yu, W. L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 54, 46–53. https://doi.org/10.1016/j.jmii.2020.09.004 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Otto, G. P. et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit. Care 15, R183. https://doi.org/10.1186/cc10332 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang, Y., Peng, H., Chen, Y., Zhou, S. & Chen, Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front. Biosci. 22, 1344–1354. https://doi.org/10.2741/4547 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pandey, K., Malviya, D., Awasthi, N. P., Nathi, S. S. & Harjai, M. Comparison of neutrophil CD64 and monocytic HLA-DR with existing biomarkers for the diagnosis and prognosis of sepsis. Anaesthesiol. Intens. Therapy 53, 304–311. https://doi.org/10.5114/ait.2021.108579 (2021).

    Article 

    Google Scholar
     

  • Bonnet, B. et al. Severe COVID-19 is characterized by the co-occurrence of moderate cytokine inflammation and severe monocyte dysregulation. EBioMedicine 73, 103622. https://doi.org/10.1016/j.ebiom.2021.103622 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilk, A. J. et al. Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. J. Exp. Med. https://doi.org/10.1084/jem.20210582 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloos, F. et al. Effect of sodium selenite administration and procalcitonin-guided therapy on mortality in patients with severe sepsis or septic shock: A randomized clinical trial. JAMA Intern. Med. 176, 1266–1276. https://doi.org/10.1001/jamainternmed.2016.2514 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bekeredjian-Ding, I., Foermer, S., Kirschning, C. J., Parcina, M. & Heeg, K. Poke weed mitogen requires Toll-like receptor ligands for proliferative activity in human and murine B lymphocytes. PLoS ONE 7, e29806. https://doi.org/10.1371/journal.pone.0029806 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-022-17368-9

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]