Connect with us

Health

Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses

Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses
Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses

 


  • Mackay, I. M. & Arden, K. E. MERS coronavirus: diagnostics, epidemiology and transmission. Virol. J. 12, 222 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stadler, K. et al. SARS–beginning to understand a new virus. Nat. Rev. Microbiol. 1, 209–218 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umakanthan, S. et al. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad. Med. J. 96, 753–758 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).


    Google Scholar
     

  • Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirtipal, N., Bharadwaj, S. & Kang, S. G. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infect. Genet. Evol. 85, 104502 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. Y. et al. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front. Cell Infect. Microbiol. 10, 587269 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaworski, J. P. Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomed. J. 44, 7–17 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Oran, D. P. & Topol, E. J. The proportion of SARS-CoV-2 infections that are asymptomatic: a systematic review. Ann. Intern. Med. 174, 655–662 (2021).

    PubMed 

    Google Scholar
     

  • Sharma, A., Ahmad Farouk, I. & Lal, S. K. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 13, 202 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, P. C. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fouchier, R. A. et al. A previously undescribed coronavirus associated with respiratory disease in humans. Proc. Natl Acad. Sci. USA 101, 6212–6216 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Llanes, A. et al. Betacoronavirus genomes: how genomic information has been used to deal with past outbreaks and the COVID-19 pandemic. Int. J. Mol. Sci. 21, 4546 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. Y., Li, L., Zhang, Y. & Wang, X. S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 9, 45 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. Delving deep into the structural aspects of a furin cleavage site inserted into the spike protein of SARS-CoV-2: a structural biophysical perspective. Biophys. Chem. 264, 106420 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bestle, D. et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci. Alliance 3, e202000786 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayati, A., Kumar, R., Francis, V. & McPherson, P. S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 296, 100306 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moog, C. et al. Protective effect of vaginal application of neutralizing and nonneutralizing inhibitory antibodies against vaginal SHIV challenge in macaques. Mucosal Immunol. 7, 46–56 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheeseman, H. M. et al. Broadly neutralizing antibodies display potential for prevention of HIV-1 infection of mucosal tissue superior to that of nonneutralizing antibodies. J. Virol. 91, e01762-16 (2017).

    PubMed 

    Google Scholar
     

  • Tan, G. S. et al. Broadly-reactive neutralizing and non-neutralizing antibodies directed against the H7 influenza virus hemagglutinin reveal divergent mechanisms of protection. PLoS Pathog. 12, e1005578 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, F. et al. Generation of neutralizing and non-neutralizing monoclonal antibodies against H7N9 influenza virus. Emerg. Microbes Infect. 9, 664–675 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alter, G. & Moody, M. A. The humoral response to HIV-1: new insights, renewed focus. J. Infect. Dis. 202, S315–S322 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suryadevara, N. et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 184, 2316–2331 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020). This article describes the isolation of a panel of SARS-Co-2 NTD-targeting and RBD-targeting nAbs summarized in this Review.

    CAS 
    PubMed 

    Google Scholar
     

  • Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 29, 819–833 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lok, S. M. An NTD supersite of attack. Cell Host Microbe 29, 744–746 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerutti, G. et al. Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Rep. 37, 109928 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerg. Microbes Infect. 11, 477–481 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ai, J. et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host Microbe 30, 1077–1083 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makdasi, E. et al. The neutralization potency of anti-SARS-CoV-2 therapeutic human monoclonal antibodies is retained against viral variants. Cell Rep. 36, 109679 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noy-Porat, T. et al. Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice. iScience 24, 102479 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haslwanter, D. et al. A combination of receptor-binding domain and N-terminal domain neutralizing antibodies limits the generation of SARS-CoV-2 spike neutralization-escape mutants. mBio 12, e0247321 (2021).

    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity 55, 998–1012 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020). This key article describes the classification of RBD-directed antibodies we adopted in this Review.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120–124 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, C. et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat. Commun. 12, 288 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banach, B. B. et al. Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Rep. 37, 109771 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annavajhala, M. K. et al. Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature 597, 703–708 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe 29, 747–751 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 597, 97–102 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 376, eabn8897 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, Y. J. et al. Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science 375, 449–454 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P. et al. SARS-CoV-2 Neutralizing antibody LY-CoV555 in outpatients with Covid-19. N. Engl. J. Med. 384, 229–237 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. H., Hotez, P. J. & Bottazzi, M. E. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum. Vaccin. Immunother. 16, 1239–1242 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerutti, G. et al. Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure 29, 655–663 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. https://doi.org/10.1016/j.celrep.2022.110812 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science 373, eabh1766 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenwick, C. et al. Patient-derived monoclonal antibody neutralizes SARS-CoV-2 Omicron variants and confers full protection in monkeys. Nat. Microbiol. https://doi.org/10.1016/10.1038/s41564-022-01198-6 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turelli, P. et al. P2G3 human monoclonal antibody neutralizes SARS-CoV-2 Omicron subvariants including BA.4 and BA.5 and Bebtelovimab escape mutants. Preprint at bioRxiv https://doi.org/10.1101/2022.07.28.501852 (2022).

    Article 

    Google Scholar
     

  • Wang, Q. et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 608, 603–608 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75. Preprint at bioRxiv https://doi.org/10.1101/2022.07.18.500332 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, S. et al. An Antibody from Single Human VH-rearranging Mouse Neutralizes All SARS-CoV-2 Variants Through BA.5 by Inhibiting Membrane Fusion. Sci. Immuno. https://doi.org/10.1126/sciimmunol.add5446 (2022). This work demonstrates a class 3 mAb, SP1-77, potently neutralizing SARS-CoV-2 by blocking membrane fusion.

    Article 

    Google Scholar
     

  • Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, P. et al. A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerg. Microbes Infect. 11, 147–157 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tortorici, M. A. et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 597, 103–108 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, M. et al. A broad and potent neutralization epitope in SARS-related coronaviruses. Proc. Natl Acad. Sci. USA 119, e2205784119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rappazzo, C. G. et al. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371, 823–829 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, D. R. et al. A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Sci. Transl. Med. 14, eabj7125 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity. Immunity 53, 1272–1280 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, Z. et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 369, 1505–1509 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, M. et al. Structural basis of a shared antibody response to SARS-CoV-2. Science 369, 1119–1123 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 1274–1278 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 584, 437–442 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, D. et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat. Struct. Mol. Biol. 27, 950–958 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. et al. Structural insights for neutralization of BA.1 and BA.2 Omicron variants by a broadly neutralizing SARS-CoV-2 antibody. Preprint at bioRxiv https://doi.org/10.1101/2022.05.13.491770 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115–119 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell 185, 1389–1401 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z. et al. A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal. Transduct. Target. Ther. 6, 378 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 608, 593–602 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheward, D. J. et al. Evasion of neutralizing antibodies by Omicron sublineage BA.2.75. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(22)00524-2 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrestha, L. B., Tedla, N. & Bull, R. A. Broadly-neutralizing antibodies against emerging SARS-CoV-2 variants. Front. Immunol. 12, 752003 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373, 1109–1116 (2021). This study is the first to identify SH-targeting nAbs that can inhibit all beta-CoV subgenera and reduce viral burden in hamsters infected with SARS-CoV-2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, P. et al. A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Sci. Transl. Med. 14, eabi9215 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Shi, W. et al. Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure https://doi.org/10.1016/j.str.2022.06.004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728–735 (2022). This study is the first to identify FP-targeting nAbs that show broad neutralizing activity against a range of coronaviruses, including Omicron sublineages of SARS-CoV-2.

    CAS 
    PubMed 

    Google Scholar
     

  • Low, J. S. et al. ACE2 engagement exposes the fusion peptide to pan-coronavirus neutralizing antibodies. Science 377, 735–742 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat. Microb. 7, 1063–1074 (2022).

    CAS 

    Google Scholar
     

  • Zhao, F. et al. Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape. iScience https://doi.org/10.1016/j.isci.2022.104914 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Extremely potent monoclonal antibodies neutralize Omicron and other SARS-CoV-2 variants. Preprint at medRxiv https://doi.org/10.1101/2022.01.12.22269023 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellner, A. et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nat. Chem. Biol. 17, 1057–1064 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Rouet, R. et al. Potent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodies. MAbs 13, 1922134 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M., Li, L., Jin, D. & Liu, Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1697 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, L. S. & Colwell, L. J. Comparative analysis of nanobody sequence and structure data. Proteins 86, 697–706 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanfield, R. L. & Wilson, I. A. Antibody structure. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.AID-0012-2013 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Schoof, M. et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 370, 1473–1479 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Gasparo, R. et al. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature 593, 424–428 (2021).

    PubMed 

    Google Scholar
     

  • Cho, H. et al. Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Sci. Transl. Med. 13, eabj5413 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ku, Z. et al. Engineering SARS-CoV-2 cocktail antibodies into a bispecific format improves neutralizing potency and breadth. Preprint at bioRxiv https://doi.org/10.1101/2022.02.01.478504 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nat. Immunol. 23, 423–430 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Du, Y. et al. A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nat. Commun. 12, 5000 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal. Transduct. Target. Ther. 6, 315 (2022).


    Google Scholar
     

  • Qi, H., Liu, B., Wang, X. & Zhang, L. The humoral response and antibodies against SARS-CoV-2 infection. Nat. Immunol. 23, 1008–1020 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Sensitivity to vaccines, therapeutic antibodies, and viral entry inhibitors and advances to counter the SARS-CoV-2 Omicron variant. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00014-22 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, L. & Gao, G. F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 21, 73–82 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. A novel STING agonist-adjuvanted pan-sarbecovirus vaccine elicits potent and durable neutralizing antibody and T cell responses in mice, rabbits and NHPs. Cell Res. 32, 269–287 (2022). This is the first report about the development of a pan-sarbecovirus vaccine based on a novel adjuvant.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41577-022-00784-3

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]