Connect with us

Health

Pathophysiology of Post-COVID syndromes: a new perspective | Virology Journal

Pathophysiology of Post-COVID syndromes: a new perspective | Virology Journal

 


  • Al-Kuraishy HM, Al-Gareeb AI. From SARS-CoV to nCoV-2019: ruction and argument. Arch Clin Infect Dis. 2020;15(2):e102624.

    CAS 

    Google Scholar
     

  • Moubarak M, Kasozi KI, Hetta HF, Shaheen HM, Rauf A, Al-Kuraishy HM, et al. The rise of SARS-CoV-2 variants and the role of convalescent plasma therapy for management of infections. Life. 2021;11(8):734.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alkhayyat SS, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GE, Simal-Gandara J. Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res. 2022;8:1–9.


    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Almulaiky YQ, Cruz-Martins N, Batiha GE. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of COVID-19: the enigmatic entity. Eur J Pharmacol. 2021;5(904): 174196.

    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Batiha GE, Faidah H, Al-Gareeb AI, Saad HM, Simal-Gandara J. Pirfenidone and post-Covid-19 pulmonary fibrosis: invoked again for realistic goals. Inflammopharmacology. 2022;31:1.


    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Alblihed M, Cruz-Martins N, Batiha GE. COVID-19 and risk of acute ischemic stroke and acute lung injury in patients with type ii diabetes mellitus: the anti-inflammatory role of metformin. Front Med. 2021;19(8):110.


    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Alkazmi L, Habotta OA, Batiha GE. High-mobility group box 1 (HMGB1) in COVID-19: extrapolation of dangerous liaisons. Inflammopharmacology. 2022;26:1.


    Google Scholar
     

  • Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lungnier C. Renin-Angiotensin system and fibrinolytic pathway in COVID-19: one-way skepticism. Biomed Biotechnol Res J (BBRJ). 2020;4(5):33.


    Google Scholar
     

  • Mostafa-Hedeab G, Al-Kuraishy HM, Al-Gareeb AI, Welson NN, Batiha GE, Conte-Junior CA. Selinexor and COVID-19: the neglected warden. Front Pharmacol. 2022;13.

  • Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Al-Maiahy TJ, Cruz-Martins N, Batiha GE. The looming effects of estrogen in COVID-19: a rocky rollout. Front Nutr. 2021;8.

  • Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier JM, Saad HM, Batiha GE. The potential role of growth differentiation factor 15 in COVID-19: a corollary subjective effect or not? Diagnostics. 2022;12(9):2051.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Gyebi GA, Batiha GE. COVID-19-induced dysautonomia: a menace of sympathetic storm. ASN Neuro. 2021;13:17590914211057636.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GE. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol Cell Biochem. 2022;11:1–2.


    Google Scholar
     

  • McCorkell L, Assaf GS, Davis HE, Wei H, Akrami A. Patient-led research collaborative: embedding patients in the long COVID narrative. Pain Rep. 2021;6(1):e913.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Al-Niemi MS, Aljowaie RM, Almutairi SM, Alexiou A, Batiha GE. The prospective effect of allopurinol on the oxidative stress index and endothelial dysfunction in covid-19. Inflammation. 2022;24:1–7.


    Google Scholar
     

  • Dicpinigaitis PV, Canning BJ. Is there (will there be) a post-COVID-19 chronic cough? Lung. 2020;198(6):863–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Welson NN, Batiha GE. Trimetazidine and COVID-19-induced acute cardiac injury: a missed key. Int J Clin Pharm. 2022;21:1–2.


    Google Scholar
     

  • Afrin LB, Weinstock LB, Molderings GJ. COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis. 2020;1(100):327–32.

    Article 

    Google Scholar
     

  • Akin C, Valent P, Metcalfe DD. Mast cell activation syndrome: proposed diagnostic criteria. J Allergy Clin Immunol. 2010;126(6):1099–104.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Akin C. Mast cell activation syndromes. J Allergy Clin Immunol. 2017;140(2):349–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castells M, Butterfield J. Mast cell activation syndrome and mastocytosis: initial treatment options and long-term management. J Allergy Clin Immunol Pract. 2019;7(4):1097–106.

    PubMed 
    Article 

    Google Scholar
     

  • Greenhalgh T, Knight M, A’Court M, Buxton M, Husain L. Management of post-acute COVID-19 in primary care. BMJ. 2020;370:m3026.

    PubMed 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Onohuean H, El-Saber BG. COVID-19 and erythrocrine function: the roller coaster and danger. Int J Immunopathol Pharmacol. 2022;14(36):03946320221103151.


    Google Scholar
     

  • Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis. 2021;53(10):737–54.

    CAS 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, Sonbol FI, Batiha GE. Hyperviscosity syndrome in COVID-19 and related vaccines: exploring of uncertainties. Clin Exp Med. 2022;24:1.


    Google Scholar
     

  • Datta SD, Talwar A, Lee JT. A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection: illness beyond acute infection and public health implications. JAMA. 2020;324(22):2251–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amenta EM, et al. Postacute COVID-19: an overview and approach to classification. Open Forum Infect Dis. 2020;7(12):ofaa509.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Fageyinbo MS, Batiha GE. Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Science OA. 2022 Mar(0):FSO797.

  • Shah W, Hillman T, Playford ED, et al. Managing the long-term effects of COVID-19: summary of NICE, SIGN, and RCGP rapid guideline. BMJ. 2021;372: n136.

    PubMed 
    Article 

    Google Scholar
     

  • Venkatesan P. NICE guideline on long COVID’. Lancet Respir Med. 2021;9(2):129.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Cuadrado ML, Florencio LL. Defining post-COVID symptoms (post-acute COVID, long COVID, persistent post-COVID): an integrative classification. Int J Environ Res Public Health. 2021;18(5):2621.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung. 2021;199(2):113–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernandez-de-Las-Penas C, Palacios-Cena D, Gomez-Mayordomo V, et al. Defining post-COVID symptoms (post-acute COVID, long COVID, persistent post-COVID): an integrative classification’. Int J Environ Res Public Health. 2021;18(5):2621.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raveendran AV, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes Metab Syndr. 2021;15(3):869–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mendelson M, Nel J, Blumberg L, et al. Long-COVID: An evolving problem with an extensive impact. S Afr Med J. 2020;111(1):10–2.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sivan M, Taylor S. NICE guideline on long COVID. BMJ. 2020;371:m4938.

    PubMed 
    Article 

    Google Scholar
     

  • Davido B, et al. Post-COVID-19 chronic symptoms: a postinfectious entity? Clin Microbiol Infect. 2020;26(11):1448–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nath A. Long-haul COVID. Neurology. 2020;95(13):559–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rando HM, Bennett TD, Byrd JB, et al. Challenges in defining Long COVID: Striking differences across literature, Electronic Health Records, and patient-reported information. medRxiv. 2021;383:590. https://doi.org/10.1101/2021.03.20.21253896.

    CAS 
    Article 

    Google Scholar
     

  • Townsend L, Dowds J, O’Brien K, et al. Persistent poor health post-COVID-19 is not associated with respiratory complications or initial disease severity. Ann Am Thorac Soc. 2021. https://doi.org/10.1513/AnnalsATS.202009-1175OC.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Saber Batiha G, Al-Gareeb AI, Saad HM, Al-Kuraishy HM. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology. 2022;13:1–7.


    Google Scholar
     

  • Buonsenso D, Espuny Pujol F, Munblit D, et al. Clinical characteristics, activity levels and mental health problems in children with Long COVID: a survey of 510 children. Preprints. 2021. https://doi.org/10.20944/preprints202103.0271.v1

  • Salamanna F, Veronesi F, Martini L, Landini MP, Fini M. Post-COVID-19 syndrome: the persistent symptoms at the post-viral stage of the disease: a systematic review of the current data. Frontiers in medicine. 2021;8:392.

    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE. COVID-19 and L-arginine Supplementations: yet to find the missed key. Curr Protein Pept Sci. 2022;23(3):166–9.

    PubMed 
    Article 

    Google Scholar
     

  • Zhao FC, Guo KJ, Li ZR. Osteonecrosis of the femoral head in SARS patients: seven years later. Eur J Orthop Surg Traumatol. 2013;23(6):671–7.

    PubMed 
    Article 

    Google Scholar
     

  • Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLOS ONE. 2020;15(11):e0240784.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tleyjeh IM, Saddik B, AlSwaidan N, AlAnazi A, Ramakrishnan RK, Alhazmi D, Aloufi A, AlSumait F, Berbari E, Halwani R. prevalence and predictors of post-acute COVID-19 syndrome (PACS) after hospital discharge: a cohort study with 4 months median follow-up. PLOS ONE. 2021;16(12): e0260568.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Simani L, Ramezani M, Darazam IA, et al. Prevalence and correlates of chronic fatigue syndrome and post-traumatic stress disorder after the outbreak of the COVID-19. J Neurovirol. 2021;27(1):154–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Thomali AW, Al-Kuraishy HM, Al-Gareeb AI, Al-Buhadiliy AK, De Waard M, Sabatier JM, Khan Khalil AA, Saad HM, Batiha GE. Role of Neuropilin 1 in COVID-19 Patients with Acute Ischemic Stroke. Biomedicines. 2022;10(8):2032.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stavem K, Ghanima W, Olsen MK, et al. 1.5–6 months after COVID-19 in non-hospitalised subjects: a population-based cohort study. Thorax. 2021;76(4):405.

    PubMed 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Mukerjee N, Al-Hamash SM, Al-Maiahy TJ, Batiha GE. 5-HT/CGRP pathway and Sumatriptan role in Covid-19. Biotechnol Genet Eng Rev. 2022;31:1–26.


    Google Scholar
     

  • Truffaut L, Demey L, Bruyneel AV, et al. Post-discharge critical COVID-19 lung function related to severity of radiologic lung involvement at admission. Respir Res. 2021;22(1):29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE. Central effects of Ivermectin in alleviation of Covid-19-induced dysautonomia. Curr Drug Targets. 2022.

  • Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, Walshaw C, Kemp S, Corrado J, Singh R, Collins T. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J Med Virol. 2021;93(2):1013–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Internal Med. 2017;5(2):90–2.

    Article 

    Google Scholar
     

  • Stam H, Stucki G, Bickenbach J. COVID-19 and post intensive care syndrome: a call for action. J Rehabil Med. 2020;52:jrm00044.

    PubMed 
    Article 

    Google Scholar
     

  • Gameil MA, Marzouk RE, Elsebaie AH, Rozaik SE. Long-term clinical and biochemical residue after COVID-19 recovery. Egypt Liver J. 2021;11(1):1–8.

    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Al-Harcan NA, Alexiou A, Batiha GE. Tranexamic Acid and Plasminogen/Plasmin Glaring Paradox in COVID-19. Endoc Metab Immune Disord Drug Targets. 2022.

  • Liao B, Liu Z, Tang L, Li L, Gan Q, Shi H, Jiao Q, Guan Y, Xie M, He X, Zhao H. Longitudinal clinical and radiographic evaluation reveals interleukin-6 as an indicator of persistent pulmonary injury in COVID-19. Int J Med Sci. 2021;18(1):29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raman B, Cassar MP, Tunnicliffe EM, Filippini N, Griffanti L, Alfaro-Almagro F, Okell T, Sheerin F, Xie C, Mahmod M, Mózes FE. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021;1(31):100683.

    Article 

    Google Scholar
     

  • Liang L, Yang B, Jiang N, Fu W, He X, Zhou Y, Ma WL, Wang X. Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J Korean Med Sci. 2020; 35(47).

  • Rudroff T, Fietsam AC, Deters JR, Bryant AD, Kamholz J. Post-COVID-19 fatigue: potential contributing factors. Brain Sci. 2020;10(12):1012.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • COVID GA, Post-Acute Care Study Group. Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging Clin Exp Res. 2020;1.

  • Mitrani RD, Dabas N, Goldberger JJ. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart Rhythm. 2020;17:1984–90.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carvalho-Schneider C, Laurent E, Lemaignen A, Lemaignen A, Beaufils E, Bourbao-Tournois C, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27:258–63.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Al-Niemi MS, Alexiou A, Batiha GE. Calprotectin: the link between acute lung injury and gastrointestinal injury in Covid-19: Ban or boon. Curr Protein Peptide Sci. 2022.

  • Pavli A, Theodoridou M, Maltezou HC. Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Arch Med Res. 2021;52(6):575–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alemanno F, Houdayer E, Parma A, Spina A, Del Forno A, Scatolini A, et al. COVID-19 cognitive deficits after respiratory assistance in the subacute phase: ACOVID-rehabilitation unit experience. PLOS ONE. 2021;16:e0246590.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Batiha GE. Targeting and modulation of the natriuretic peptide system in Covid-19: a single or double-edged effect?. Curr Protein Peptide Sci. 2022.

  • Shanbehzadeh S, Tavahomi M, Zanjari N, Ebrahimi-Takamjani I, Amiri-Arimi S. Physical and mental health complications post-COVID-19: scoping review. J Psychosom Res. 2021;1(147):110525.

    Article 

    Google Scholar
     

  • Chang MC, Park D. Incidence of post-traumatic stress disorder after coronavirus disease. Health Care. 2020;8:373.

    PubMed Central 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Al-Hamash SM, Cavalu S, El-Bouseary MM, Sonbol FI, Batiha GE. Changes in the blood viscosity in patients with SARS-CoV-2 infection. Front Med. 2022;9.

  • Scoppettuolo P, Borrelli S, Naeije G. Neurological involvement in SARS-CoV-2 infection: a clinical systematic review. Brain Behav Immun Health. 2020;5:100094.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moreno-Pérez O, Merino E, Leon-Ramirez JM, Prunier L, Cavelier G, Thill MP, et al. COVID19-ALC research post-acute COVID-19 syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021;82:378–83.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ståhlberg M, Reistam U, Fedorowski A, Villacorta H, Horiuchi Y, Bax J, Pitt B, Matskeplishvili S, Lüscher TF, Weichert I, Thani KB. Post-COVID-19 tachycardia syndrome: a distinct phenotype of post-acute COVID-19 syndrome. Am J Med. 2021;134:1451–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: what controls its onset? Front Immunol. 2016;7:160.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cañas CA. The triggering of post-COVID-19 autoimmunity phenomena could be associated with both transient immunosuppression and an inappropriate form of immune reconstitution in susceptible individuals. Med Hypotheses. 2020;1(145):110345.

    Article 

    Google Scholar
     

  • Walton AH, Muenzer JT, Rasche D, et al. Reactivation of multiple viruses in patients with sepsis. PLOS ONE. 2014;9(2):e98819.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huang J, Zheng L, Li Z, Hao S, Ye F, Chen J, Gans HA, Yao X, Liao J, Wang S, Zeng M. Kinetics of SARS-CoV-2 positivity of infected and recovered patients from a single center. Sci Rep. 2020;10(1):1.


    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GE. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology. 2022;3:1–9.


    Google Scholar
     

  • Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, Van Hemelrijck M. Associations between immune-suppressive and stimulating drugs and novel COVID-19—a systematic review of current evidence. ecancermedicalscience. 2020;14.

  • Sivashanmugam K, Kandasamy M, Subbiah R, Ravikumar V. Repurposing of histone deacetylase inhibitors: a promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci. 2021;1(266):118883.


    Google Scholar
     

  • Carvacho I, Piesche M. RGD-binding integrins and TGF-β in SARS-CoV-2 infections–novel targets to treat COVID-19 patients? Clin Transl Immunol. 2021;10(3):e1240.

    CAS 
    Article 

    Google Scholar
     

  • Goërtz YM, Van Herck M, Delbressine JM, Vaes AW, Meys R, Machado FV, Houben-Wilke S, Burtin C, Posthuma R, Franssen FM, van Loon N. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):00542.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gombar S, Chang M, Hogan CA, Zehnder J, Boyd S, Pinsky BA, Shah NH. Persistent detection of SARS-CoV-2 RNA in patients and healthcare workers with COVID-19. J Clin Virol. 2020;1(129):104477.

    Article 

    Google Scholar
     

  • Nakajima Y, Ogai A, Furukawa K, Arai R, Anan R, Nakano Y, Kurihara Y, Shimizu H, Misaki T, Okabe N. Prolonged viral shedding of SARS-CoV-2 in an immunocompromised patient. J Infect Chemother. 2021;27(2):387–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, Zhang H. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kouo T, Chaisawangwong W. SARS-CoV-2 as a superantigen in multisystem inflammatory syndrome in children. J Clin Investig; 2021;131(10).

  • Koné-Paut I, Cimaz R. Is it Kawasaki shock syndrome, Kawasaki-like disease or pediatric inflammatory multisystem disease? The importance of semantic in the era of COVID-19 pandemic. RMD Open. 2020;6(2):e001333.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Novak P, Mukerji SS, Alabsi HS, Systrom D, Marciano SP, Felsenstein D, Mullally WJ, Pilgrim DM. Multisystem involvement in post‐acute sequelae of COVID‐19 (PASC). Ann Neurol. 2021.

  • Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur J Case Rep Internal Med. 2021;8(3).

  • Assar S, Pournazari M, Soufivand P, Mohamadzadeh D. Systemic lupus erythematosus after coronavirus disease-2019 (COVID-19) infection: case-based review. Egypt Rheumatol. 2022;44(2):145–9.

    CAS 
    Article 

    Google Scholar
     

  • Varghese J, Sandmann S, Ochs K, Schrempf IM, Frömmel C, Dugas M, Schmidt HH, Vollenberg R, Tepasse PR. Persistent symptoms and lab abnormalities in patients who recovered from COVID-19. Sci Rep. 2021;11(1):1–8.

    Article 

    Google Scholar
     

  • Zhao YM, Shang YM, Song WB, et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020;25:100463.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Van den Borst B, et al. Comprehensive health assessment three months after recovery from acute COVID-19. Clin Infect Dis. 2020; ciaa1750.

  • Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–32.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei J, Yang H, Lei P, et al. Analysis of thin-section CT in patients with coronavirus disease (COVID-19) after hospital discharge. J Xray Sci Technol. 2020;28(3):383–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Zhao X, Wang Y, et al. Damaged lung gas-exchange function of discharged COVID-19 patients detected by hyperpolarized (129)Xe MRI. Sci Adv. 2020;7(1):eabc8180.

    Article 

    Google Scholar
     

  • Crameri GAG, Bielecki M, Züst R, et al. Reduced maximal aerobic capacity after COVID-19 in young adult recruits, Switzerland, May 2020. Euro Surveill. 2020;25(36):2001542.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burnham EL, Janssen WJ, Riches DW, Moss M, Downey GP. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43(1):276–85.

    PubMed 
    Article 

    Google Scholar
     

  • Rai DK, Sharma P, Kumar R. Post COVID 19 pulmonary fibrosis Is it real threat? Indian J Tuberc. 2021;68(3):330–3.

    PubMed 
    Article 

    Google Scholar
     

  • Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–304.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front Immunol. 2021;12(2574):136.


    Google Scholar
     

  • Chen Q, Yu B, Yang Y, Huang J, Liang Y, Zhou J, Li L, Peng X, Cheng B, Lin Y. Immunological and inflammatory profiles during acute and convalescent phases of severe/ critically ill COVID-19 patients. Int Immunopharmacol. 2021;97:107685.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arnold DT, Hamilton FW, Milne A, et al. Patient outcomes after hospitalisation with COVID-19 and implications for follow-up: results from a prospective UK cohort. Thorax. 2020;76:399–401.

    PubMed 
    Article 

    Google Scholar
     

  • Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, Rusconi S, Gervasoni C, Ridolfo AL, Rizzardini G, Antinori S. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin Infect Dis. 2020;71(15):889–90.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan. China JAMA Neurol. 2020;77(6):683–90.

    PubMed 
    Article 

    Google Scholar
     

  • Al-Buhadily AK, Hussien NR, Al-Niemi MS, Al-Kuraishy HM, Al-Gareeb AI. Misfortune and spy story in the neurological manifestations of COVID-19. J Pak Med Assoc. 2021;1:S157–60.


    Google Scholar
     

  • Niazkar HR, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020;41(7):1667–71.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Townsend L, Moloney D, Finucane C, McCarthy K, Bergin C, Bannan C, Kenny R-A. Fatigue following COVID-19 infection is not associated with autonomic dysfunction. PLOS ONE. 2021;16:e0247280.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackay A. A paradigm for post-COVID-19 fatigue syndrome analogous to ME/CFS. Front Neurol. 2021;12:1334.

    Article 

    Google Scholar
     

  • Ryabkova VA, Churilov LP, Shoenfeld Y. Neuroimmunology: What role for autoimmunity, neuroinflammation, and small fiber neuropathy in fibromyalgia, chronic fatigue syndrome, and adverse events after human papillomavirus vaccination? Int J Mol Sci. 2019;20:5164.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Komaroff AL, Bateman L. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? Front Med. 2021;18(7):1132.


    Google Scholar
     

  • Tang SW, Helmeste D, Leonard B. Inflammatory neuropsychiatric disorders and COVID-19 neuroinflammation. Acta Neuropsychiatr. 2021;33(4):165–77.

    PubMed 
    Article 

    Google Scholar
     

  • Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, Melloni EM, Furlan R, Ciceri F, Rovere-Querini P, Benedetti F. Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun. 2020;1(89):594–600.

    Article 

    Google Scholar
     

  • Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC, Jia T, Zhao Y, Wang D, Xiao A, Yin B. Cerebral micro-structural changes in COVID-19 patients–an MRI-based 3-month follow-up study. EClinicalMedicine. 2020;1(25):100484.

    Article 

    Google Scholar
     

  • Paterson RW, Brown RL, Benjamin L, Nortley R, Wiethoff S, Bharucha T, Jayaseelan DL, Kumar G, Raftopoulos RE, Zambreanu L, Vivekanandam V. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143(10):3104–20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • O’Hanlon S, Inouye SK. Delirium: a missing piece in the COVID-19 pandemic puzzle. Age Ageing. 2020;49:497–8.

    PubMed 
    Article 

    Google Scholar
     

  • Hariyanto TI, Putri C, Hananto JE, Arisa J, Situmeang RF, Kurniawan A. Delirium is a good predictor for poor outcomes from coronavirus disease 2019 (COVID-19) pneumonia: a systematic review, meta-analysis, and meta-regression. J Psychiatr Res. 2021;1(142):361–8.

    Article 

    Google Scholar
     

  • Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, Zandi MS, Lewis G, David AS. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–27.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry. 2021;8(5):416–27.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S, Felisati G. First ultrastructural autoptic findings of SARS-Cov-2 in olfactory pathways and brainstem.

  • Yong SJ. Persistent brainstem dysfunction in long-COVID: a hypothesis. ACS Chem Neurosci. 2021;12(4):573–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, Mushumba H, Fitzek A, Allweiss L, Dandri M, Dottermusch M. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, Adams G, Hornick JL, Padera RF Jr, Sabeti P. Neuropathological features of COVID-19. N Engl J Med. 2020;383(10):989–92.

    PubMed 
    Article 

    Google Scholar
     

  • Majolo F, Silva GL, Vieira L, Anli C, Timmers LF, Laufer S, Goettert MI. Neuropsychiatric disorders and COVID-19: what we know so far. Pharmaceuticals. 2021;14(9):933.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kumar D, Jahan S, Khan A, Siddiqui AJ, Redhu NS, Khan J, Banwas S, Alshehri B, Alaidarous M. Neurological manifestation of SARS-CoV-2 induced inflammation and possible therapeutic strategies against COVID-19. Mol Neurobiol. 2021;58(7):3417–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014;19(194):145–58.

    Article 

    Google Scholar
     

  • Chen R, Wang K, Yu J, Howard D, French L, Chen Z, Wen C, Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 2021;20(11):1860.


    Google Scholar
     

  • Garcia MA, Barreras PV, Lewis A, Pinilla G, Sokoll LJ, Kickler T, Mostafa H, Caturegli M, Moghekar A, Fitzgerald KC, Neuro-COVID H. Cerebrospinal fluid in COVID-19 neurological complications: Neuroaxonal damage, anti-SARS-Cov2 antibodies but no evidence of cytokine storm. J Neurol Sci. 2021;15(427):117517.

    Article 

    Google Scholar
     

  • Kharraziha I, Axelsson J, Ricci F, DiMartino G, Persson M, Sutton R, Fedorowski A, Hamrefors V. Serumactivityagainstg protein–coupled receptors and severity of orthostatic symptoms in postural orthostatic tachycardia syndrome. J Am Heart Assoc. 2020;9:e015989.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rovere-Querini P, De Lorenzo R, Conte C, Brioni E, Lanzani C, Yacoub MR, Chionna R, Martinenghi S, Vitali G, Tresoldi M, Ciceri F. Post-COVID-19 follow-up clinic: depicting chronicity of a new disease. Acta Bio Medica: Atenei Parmensis. 2020;91(9S):22.

    CAS 

    Google Scholar
     

  • Onohuean H, Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Batiha GE. COVID-19 and development of heart failure: mystery and truth. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(10):2013–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Siddiq MM, Chan AT, Miorin L, Yadaw AS, Beaumont KG, Kehrer T, Cupic A, White KM, Tolentino RE, Hu B, Stern AD. Functional effects of cardiomyocyte injury in COVID-19. J Virol. 2021;13:603.


    Google Scholar
     

  • Carlson FR Jr, Bosukonda D, Keck PC, Carlson WD. Multiorgan damage in patients with COVID-19: is the TGF-β/BMP pathway the missing link? Basic Transl Sci. 2020;5(11):1145–8.


    Google Scholar
     

  • Nalbandian A, Sehgal K, Gupta A, Madhavan MV, McGroder C, Stevens JS, Cook JR, Nordvig AS, Shalev D, Sehrawat TS, Ahluwalia N. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Desai AD, Boursiquot BC, Melki L, Wan EY. Management of arrhythmias associated with COVID-19. Curr Cardiol Rep. 2020;23:2.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ambrosino P, Calcaterra I, Molino A, Moretta P, Lupoli R, Spedicato GA, Papa A, Motta A, Maniscalco M, Di Minno MN. Persistent endothelial dysfunction in post-acute COVID-19 syndrome: a case-control study. Biomedicines. 2021;9(8):957.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Cardioimmunology of arrhythmias: the role of autoimmune and infammatory cardiac channelopathies. Nat Rev Immunol. 2019;19:63–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, Shchendrygina A, Escher F, Vasa-Nicotera M, Zeiher AM, Vehreschild M. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–73.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Moody WE, Liu B, Mahmoud-Elsayed HM, Senior J, Lalla SS, Khan-Kheil AM, Brown S, Saif A, Moss A, Bradlow WM, Khoo J. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J Am Soc Echocardiogr. 2021;34(5):562–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rajpal S, Tong MS, Borchers J, Zareba KM, Obarski TP, Simonetti OP, Daniels CJ. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021;6(1):116–8.

    PubMed 

    Google Scholar
     

  • Gasecka A, Pruc M, Kukula K, Gilis-Malinowska N, Filipiak KJ, Jaguszewski MJ, Szarpak L. Post-COVID-19 heart syndrome. Cardiol J. 2021;28(2):353–4.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lambadiari V, Mitrakou A, Kountouri A, Thymis J, Katogiannis K, Korakas E, Varlamos C, Andreadou I, Tsoumani M, Triantafyllidi H, Bamias A. Association of COVID-19 with impaired endothelial glycocalyx, vascular function and myocardial deformation 4 months after infection. Eur J Heart Fail. 2021;23(11):1916–26.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Akpek M. Does COVID-19 cause hypertension? Angiology. 2021;10:00033197211053903.


    Google Scholar
     

  • Rossi R, Coppi F, Monopoli DE, Sgura FA, Arrotti S, Boriani G. Pulmonary arterial hypertension and right ventricular systolic dysfunction in COVID-19 survivors. Cardiol J. 2021;29:163–5.

    PubMed 
    Article 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI. COVID-19 and acute kidney injury: a new perspective. Age (years). 2021;1(30):42.


    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI. Acute kidney injury and COVID-19. Egypt J Internal Med. 2021;33(1):1–5.


    Google Scholar
     

  • Nugent J, Aklilu A, Yamamoto Y, Simonov M, Li F, Biswas A, Ghazi L, Greenberg JH, Mansour SG, Moledina DG, Wilson FP. Assessment of acute kidney injury and longitudinal kidney function after hospital discharge among patients with and without COVID-19. JAMA Netw Open. 2021;4(3):e211095.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gu X, Huang L, Cui D, Wang Y, Wang Y, Xu J, Shang L, Fan G, Cao B. Association of acute kidney injury with 1-year outcome of kidney function in hospital survivors with COVID-19: a cohort study. EBioMedicine. 2022;1(76): 103817.

    Article 

    Google Scholar
     

  • Yusuf F, Fahriani M, Mamada SS, Frediansyah A, Abubakar A, Maghfirah D, Fajar JK, Maliga HA, Ilmawan M, Emran TB, Ophinni Y. Global prevalence of prolonged gastrointestinal symptoms in COVID-19 survivors and potential pathogenesis: a systematic review and meta-analysis. F1000Research. 2021;10:301.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carfi A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–5. https://doi.org/10.1001/jama.2020.12603.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sathish T, Cao Y, Kapoor N. Newly diagnosed diabetes in COVID-19 patients. Prim Care Diabetes. 2021;15(1):194.

    PubMed 
    Article 

    Google Scholar
     

  • Chng CL, Tan HC, Too CW, Lim WY, Chiam PP, Zhu L, Nadkarni NV, Lim AY. Diagnostic performance of ATA, BTA and TIRADS sonographic patterns in the prediction of malignancy in histologically proven thyroid nodules. Singapore Med J. 2018;59(11):578.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feghali K, Atallah J, Norman C. Manifestations of thyroid disease post COVID-19 illness: report of Hashimoto thyroiditis, Graves’ disease, and subacute thyroiditis. J Clin Transl Endocrinol Case Rep. 2021;1(22): 100094.


    Google Scholar
     

  • Moreno-Perez O, Merino E, Alfayate R, Torregrosa ME, Andres M, Leon-Ramirez JM, Boix V, Gil J, Pico A. COVID19-ALC Research group. Male pituitary–gonadal axis dysfunction in post-acute COVID-19 syndrome—prevalence and associated factors: a Mediterranean case series. Clin Endocrinol. 2021;96:353–62.

    Article 

    Google Scholar
     

  • Urhan E, Karaca Z, Unuvar GK, Gundogan K, Unluhizarci K. Investigation of pituitary functions after acute coronavirus disease 2019. Endocr J. 2022;69:649–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Talwar D, Madaan S, Kumar S, Jaiswal A, Khanna S, Hulkoti V, Eleti MR. Post COVID hypothalamic-pituitary-adrenal axis dysfunction manifesting as perinatal depression: a case series. Med Sci. 2021;25(112):1402–6.


    Google Scholar
     

  • Kothandaraman N, Rengaraj A, Xue B, Yew WS, Velan SS, Karnani N, Leow MK. COVID-19 endocrinopathy with hindsight from SARS. Am J Physiol Endocrinol Metab. 2021;320(1):E139–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Raveendran AV, Misra A. Post COVID-19 syndrome (“Long COVID”) and diabetes: challenges in diagnosis and management. Diabetes Metab Syndr. 2021;15(5): 102235.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patell R, Bogue T, Koshy A, Bindal P, Merrill M, Aird WC, Bauer KA, Zwicker JI. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020;136(11):1342–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salisbury R, Iotchkova V, Jaafar S, Morton J, Sangha G, Shah A, Untiveros P, Curry N, Shapiro S. Incidence of symptomatic, image-confirmed venous thromboembolism following hospitalization for COVID-19 with 90-day follow-up. Blood Adv. 2020;4(24):6230–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boudhabhay I, Rabant M, Roumenina LT, Coupry LM, Poillerat V, Marchal A, Frémeaux-Bacchi V, El Karoui K, Monchi M, Pourcine F. Case report: adult post-COVID-19 multisystem inflammatory syndrome and thrombotic microangiopathy. Front Immunol. 2021;23(12):2284.


    Google Scholar
     

  • Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol. 2020;16(10):581–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tan J, Anderson D, Rathore AP, O’Neill A, Mantri CK, Saron WA, Lee C, Chu WC, Kang A, Foo R, Kalimuddin S. Signatures of mast cell activation are associated with severe COVID-19. medRxiv. 2021;586:509.


    Google Scholar
     

  • Molderings GJ, Kolck UW, Scheurlen C, Brüss M, Homann J, Von Kügelgen I. Multiple novel alterations in Kit tyrosine kinase in patients with gastrointestinally pronounced systemic mast cell activation disorder. Scand J Gastroenterol. 2007;42(9):1045–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maxwell AJ, Ding J, You Y, Dong Z, Chehade H, Alvero A, Mor Y, Draghici S, Mor G. Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. J Leukoc Biol. 2021;109(1):35–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mukherjee R, Bhattacharya A, Bojkova D, Mehdipour AR, Shin D, Khan KS, Cheung HH, Wong KB, Ng WL, Cinatl J, Geurink PP. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. J Biol Chem. 2021;297(2):100925.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Theoharides TC. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors (Oxford, England). 2020;46:306.

    CAS 
    Article 

    Google Scholar
     

  • Veerappan A, Reid AC, Estephan R, et al. Mast cell renin and a local renin-angiotensin system in the airway: role in bronchoconstriction. Proc Natl Acad Sci USA. 2008;105(4):1315–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fuchs B, Sjöberg L, Westerberg CM, Ekoff M, Swedin L, Dahlén SE, Adner M, Nilsson GP. Mast cell engraftment of the peripheral lung enhances airway hyperresponsiveness in a mouse asthma model. Am J Physiol Lung Cell Mol Physiol. 2012;303(12):L1027–36.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McNeil BD, Pundir P, Meeker S, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Komi DE, Khomtchouk K, Santa Maria PL. A review of the contribution of mast cells in wound healing: involved molecular and cellular mechanisms. Clin Rev Allergy Immunol. 2020;58(3):298–312.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mehboob R, Lavezzi AM. Neuropathological explanation of minimal COVID-19 infection rate in newborns, infants and children–a mystery so far. New insight into the role of Substance P. J Neurol Sci. 2021;420:117276.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karamyan VT. Between two storms, vasoactive peptides or bradykinin underlie severity of COVID-19? Physiol Rep. 2021;9(5):e14796.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Caillet-Saguy C, Durbesson F, Rezelj VV, Gogl G, Tran QD, Twizere JC, Vignuzzi M, Vincentelli R, Wolff N. Host PDZ-containing proteins targeted by SARS-CoV-2. FEBS J. 2021;288(17):5148–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wechsler JB, Butuci M, Wong A, Kamboj AP, Youngblood BA. Mast cell activation is associated with post-acute COVID-19 syndrome. Allergy. 2022;77(4):1288.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Szukiewicz D, Wojdasiewicz P, Watroba M, Szewczyk G. Mast cell activation syndrome in COVID-19 and female reproductive function: theoretical background vs. accumulating clinical evidence. J Immunol Res. 2022;2022:1–22.

    Article 

    Google Scholar
     

  • Conti P, Ronconi G, Caraffa AL, Gallenga CE, Ross R, Frydas I, Kritas SK. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Theoharides TC, Cholevas C, Polyzoidis K, Politis A. Long-COVID syndrome-associated brain fog and chemofog: luteolin to the rescue. BioFactors. 2021;47(2):232–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krishnan K, Lin Y, Prewitt KR, Potter DA. Multidisciplinary approach to brain fog and related persisting symptoms post COVID-19. J Health Serv Psychol. 2022;2:1–8.


    Google Scholar
     

  • Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, Guo L, Yang J, Wang C, Jiang S, Yang D. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe. 2020;27(6):883–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. Mast cell activation symptoms are prevalent in Long-COVID. Int J Infect Dis. 2021;1(112):217–26.

    Article 

    Google Scholar
     

  • Malone RW, Tisdall P, Fremont-Smith P, Liu Y, Huang XP, White KM, Miorin L, Moreno E, Alon A, Delaforge E, Hennecker CD. COVID-19: famotidine, histamine, mast cells, and mechanisms. Front Pharmacol. 2021;23(12):216.


    Google Scholar
     

  • Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, Church MK, Saluja R. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol. 2018;13(9):1873.

    Article 

    Google Scholar
     

  • Lim HD, Van Rijn RM, Ling P, Bakker RA, Thurmond RL, Leurs R. Evaluation of histamine H1-, H2-, and H3-receptor ligands at the human histamine H4 receptor: identification of 4-methylhistamine as the first potent and selective H4 receptor agonist. J Pharmacol Exp Ther. 2005;314:1310–21. https://doi.org/10.1124/jpet.105.087965.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Thurmond RL. The histamine H4 receptor: from orphan to the clinic. Front Pharmacol. 2015;6:65. https://doi.org/10.3389/fphar.2015.00065.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thurmond RL, Chen B, Dunford PJ, Greenspan AJ, Karlsson L, La D, et al. Clinical and preclinical characterization of the histamine H(4) receptor antagonist JNJ-39758979. J Pharmacol Exp Ther. 2014;349:176–84. https://doi.org/10.1124/jpet.113.211714.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Glynne P, Tahmasebi N, Gant V, Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med. 2022;70(1):61–7.

    PubMed 
    Article 

    Google Scholar
     

  • Kazama I. Stabilizing mast cells by commonly used drugs: a novel therapeutic target to relieve Post-COVID syndrome? Drug Discov Ther. 2020;14(5):259–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Molderings GJ, Haenisch B, Brettner S, Homann J, Menzen M, Dumoulin FL, Panse J, Butterfield J, Afrin LB. Pharmacological treatment options for mast cell activation disease. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(7):671–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaakati R, Khokhar D, Akin C. Safety of COVID-19 vaccination in patients with mastocytosis and monoclonal mast cell activation syndrome. J Allergy Clin Immunol Pract. 2021;9(8):3198–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schwensen HF, Borreschmidt LK, Storgaard M, Redsted S, Christensen S, Madsen LB. Fatal pulmonary fibrosis: a post-COVID-19 autopsy case. J Clin Pathol. 2021;74(6):400–2.

    CAS 
    Article 

    Google Scholar
     

  • Park SH, Kim JY, Kim JM, Yoo BR, Han SY, Jung YJ, Bae H, Cho J. PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways. Sci Rep. 2020;10(1):1–2.

    CAS 

    Google Scholar
     

  • Ferrara F, Granata G, Pelliccia C, La Porta R, Vitiello A. The added value of pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV-2. Eur J Clin Pharmacol. 2020;76(11):1615–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xi Z, Zhigang Z, Ting L. Post-inflammatory pulmonary fibrosis in a discharged COVID-19 patient: Effectively treated with Pirfenidone. Arch Pulmonol Respir Care. 2020;6(1):051–3.


    Google Scholar
     

  • Ryan J, Fernando J, Barnstein B. TGFb1 suppresses the mast cell response in vitro and in vivo. J Immunol. 2010;184(1):86.6.


    Google Scholar
     

  • Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MP, de Bruijn MJ, van Ijcken WF, Junt T, Tam SY, Galli SJ, Hendriks RW. Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy. 2020;75(8):1966–78.

    PubMed 
    Article 

    Google Scholar
     

  • Schanin J, Gebremeskel S, Korver W, Falahati R, Butuci M, Haw TJ, Nair PM, Liu G, Hansbro NG, Hansbro PM, Evensen E. A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol. 2021;14(2):366–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hermans MA, Schrijver B, van Holten-Neelen CC, van Wijk RG, van Hagen PM, van Daele PL, Dik WA. The JAK1/JAK2-inhibitor ruxolitinib inhibits mast cell degranulation and cytokine release. Clin Exp Allergy. 2018;48(11):1412–20.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://virologyj.biomedcentral.com/articles/10.1186/s12985-022-01891-2

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]