Connect with us

Health

Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1–42 in Alzheimer’s disease

Noncanonical regulation of imprinted gene Igf2 by amyloid-beta 1–42 in Alzheimer’s disease

 


  • Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hampel, H. et al. The amyloid-beta pathway in Alzheimer’s disease. Mol. Psychiatry https://doi.org/10.1038/s41380-021-01249-0 (2021).

    Article 

    Google Scholar
     

  • Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 12, 383–388 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608. https://doi.org/10.15252/emmm.201606210 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Maloney, B. & Lahiri, D. K. The Alzheimer’s amyloid beta-peptide (Abeta) binds a specific DNA Abeta-interacting domain (AbetaID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: characterizing a new regulatory motif. Gene 488, 1–12. https://doi.org/10.1016/j.gene.2011.06.004 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. A., Zhou, B., Nabet, A. M., Wernig, M. & Sudhof, T. C. Differential signaling mediated by ApoE2, ApoE3, and ApoE4 in human neurons parallels Alzheimer’s disease risk. J. Neurosci. 39, 7408–7427. https://doi.org/10.1523/JNEUROSCI.2994-18.2019 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y. A., Zhou, B., Wernig, M. & Sudhof, T. C. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Abeta secretion. Cell 168, 427–441e421. https://doi.org/10.1016/j.cell.2016.12.044 (2017).

  • Barucker, C. et al. Nuclear translocation uncovers the amyloid peptide Abeta42 as a regulator of gene transcription. J. Biol. Chem. 289, 20182–20191. https://doi.org/10.1074/jbc.M114.564690 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fertan, E. et al. Cognitive decline, cerebral-spleen tryptophan metabolism, oxidative stress, cytokine production, and regulation of the txnip gene in a triple transgenic mouse model of Alzheimer disease. Am. J. Pathol. 189, 1435–1450. https://doi.org/10.1016/j.ajpath.2019.03.006 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ahmadieh, H. & Azar, S. T. Liver disease and diabetes: Association, pathophysiology, and management. Diabetes Res. Clin. Pract. 104, 53–62. https://doi.org/10.1016/j.diabres.2014.01.003 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Teo, E. et al. Metabolic stress is a primary pathogenic event in transgenic Caenorhabditis elegans expressing pan-neuronal human amyloid beta. Elife https://doi.org/10.7554/eLife.50069 (2019).

    Article 

    Google Scholar
     

  • Grabuschnig, S. et al. Putative origins of cell-free DNA in humans: A review of active and passive nucleic acid release mechanisms. Int. J. Mol. Sci. 21, 66. https://doi.org/10.3390/ijms21218062 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ranucci, R. Cell-free DNA: Applications in different diseases. Methods Mol. Biol. 1909, 3–12. https://doi.org/10.1007/978-1-4939-8973-7_1 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Esquerda-Canals, G., Montoliu-Gaya, L., Guell-Bosch, J. & Villegas, S. Mouse models of Alzheimer’s disease. J. Alzheimers Dis. 57, 1171–1183. https://doi.org/10.3233/JAD-170045 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tai, L. M., Maldonado Weng, J., LaDu, M. J. & Brady, S. T. Relevance of transgenic mouse models for Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 177, 1–48. https://doi.org/10.1016/bs.pmbts.2020.07.007 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Watamura, N., Sato, K. & Saido, T. C. Mouse models of Alzheimer’s disease for preclinical research. Neurochem. Int. 158, 105–361. https://doi.org/10.1016/j.neuint.2022.105361 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gendron, W. H. et al. Age related weight loss in female 5xFAD mice from 3 to 12 months of age. Behav. Brain Res. 406, 113214. https://doi.org/10.1016/j.bbr.2021.113214 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fertan, E. & Brown, R. E. Age-related deficits in working memory in 5xFAD mice in the Hebb–Williams maze. Behav. Brain Res. 424, 113806. https://doi.org/10.1016/j.bbr.2022.113806 (2022).

    Article 

    Google Scholar
     

  • Kimura, R. & Ohno, M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model. Neurobiol. Dis. 33, 229–235. https://doi.org/10.1016/j.nbd.2008.10.006 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T. A. & Wirths, O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 33(196), e129-140. https://doi.org/10.1016/j.neurobiolaging.2010.05.027 (2012).

    Article 
    CAS 

    Google Scholar
     

  • O’Leary, T. P., Mantolino, H. M., Stover, K. R. & Brown, R. E. Age-related deterioration of motor function in male and female 5xFAD mice from 3 to 16 months of age. Genes Brain Behav. 19, e12538. https://doi.org/10.1111/gbb.12538 (2020).

    Article 

    Google Scholar
     

  • Troncoso-Escudero, P. & Vidal, R. L. Insulin-like growth factor 2: Beyond its role in hippocampal-dependent memory. J. Cell Immunol. 3, 46–52 (2021).


    Google Scholar
     

  • Cianfarani, S. Insulin-like growth factor-II: New roles for an old actor. Front Endocrinol. 3, 118. https://doi.org/10.3389/fendo.2012.00118 (2012).

    Article 

    Google Scholar
     

  • Livingstone, C. & Borai, A. Insulin-like growth factor-II: Its role in metabolic and endocrine disease. Clin. Endocrinol. 80, 773–781. https://doi.org/10.1111/cen.12446 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Holly, J. M. P., Biernacka, K. & Perks, C. M. The neglected insulin: IGF-II, a metabolic regulator with implications for diabetes, obesity, and cancer. Cells https://doi.org/10.3390/cells8101207 (2019).

    Article 

    Google Scholar
     

  • White, V. et al. IGF2 stimulates fetal growth in a sex- and organ-dependent manner. Pediatr. Res. 83, 183–189. https://doi.org/10.1038/pr.2017.221 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hertze, J., Nagga, K., Minthon, L. & Hansson, O. Changes in cerebrospinal fluid and blood plasma levels of IGF-II and its binding proteins in Alzheimer’s disease: An observational study. BMC Neurol. 14, 64. https://doi.org/10.1186/1471-2377-14-64 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mellott, T. J., Pender, S. M., Burke, R. M., Langley, E. A. & Blusztajn, J. K. IGF2 ameliorates amyloidosis, increases cholinergic marker expression and raises BMP9 and neurotrophin levels in the hippocampus of the APPswePS1dE9 Alzheimer’s disease model mice. PLoS ONE 9, e94287. https://doi.org/10.1371/journal.pone.0094287 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pascual-Lucas, M. et al. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol. Med. 6, 1246–1262. https://doi.org/10.15252/emmm.201404228 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, B. & Mattson, M. P. IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J. Neurosci. 12, 1558–1566 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. Y. et al. A critical role for IGF-II in memory consolidation and enhancement. Nature 469, 491–497. https://doi.org/10.1038/nature09667 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Stern, S. A., Chen, D. Y. & Alberini, C. M. The effect of insulin and insulin-like growth factors on hippocampus- and amygdala-dependent long-term memory formation. Learn. Mem. 21, 556–563. https://doi.org/10.1101/lm.029348.112 (2014).

    Article 

    Google Scholar
     

  • Steinmetz, A. B., Johnson, S. A., Iannitelli, D. E., Pollonini, G. & Alberini, C. M. Insulin-like growth factor 2 rescues aging-related memory loss in rats. Neurobiol. Aging 44, 9–21. https://doi.org/10.1016/j.neurobiolaging.2016.04.006 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155. https://doi.org/10.1038/351153a0 (1991).

    Article 
    CAS 

    Google Scholar
     

  • DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859. https://doi.org/10.1016/0092-8674(91)90513-x (1991).

    Article 
    CAS 

    Google Scholar
     

  • Ferguson-Smith, A. C., Cattanach, B. M., Barton, S. C., Beechey, C. V. & Surani, M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature 351, 667–670. https://doi.org/10.1038/351667a0 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Peters, J. The role of genomic imprinting in biology and disease: An expanding view. Nat. Rev. Genet. 15, 517–530. https://doi.org/10.1038/nrg3766 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ferguson-Smith, A. C. & Bourc’his, D. The discovery and importance of genomic imprinting. Elife https://doi.org/10.7554/eLife.42368 (2018).

    Article 

    Google Scholar
     

  • Lawson, H. A., Cheverud, J. M. & Wolf, J. B. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 14, 609–617. https://doi.org/10.1038/nrg3543 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tucci, V., Isles, A. R., Kelsey, G., Ferguson-Smith, A. C. & Erice Imprinting, G. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965. https://doi.org/10.1016/j.cell.2019.01.043 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zemel, S., Bartolomei, M. S. & Tilghman, S. M. Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nat. Genet. 2, 61–65. https://doi.org/10.1038/ng0992-61 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Kaffer, C. R., Grinberg, A. & Pfeifer, K. Regulatory mechanisms at the mouse Igf2/H19 locus. Mol. Cell Biol. 21, 8189–8196. https://doi.org/10.1128/MCB.21.23.8189-8196.2001 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Thorvaldsen, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev. 12, 3693–3702. https://doi.org/10.1101/gad.12.23.3693 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kaffer, C. R. et al. A transcriptional insulator at the imprinted H19/Igf2 locus. Genes Dev. 14, 1908–1919 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Srivastava, M. et al. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev. 14, 1186–1195 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Nordin, M., Bergman, D., Halje, M., Engstrom, W. & Ward, A. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Prolif. 47, 189–199. https://doi.org/10.1111/cpr.12106 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sasaki, H. et al. Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene. Genes Dev. 6, 1843–1856. https://doi.org/10.1101/gad.6.10.1843 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Ariel, M. et al. Allele-specific structures in the mouse Igf2-H19 domain. Cold Spring Harb. Symp. Quant. Biol. 58, 307–313 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Feil, R., Walter, J., Allen, N. D. & Reik, W. Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes. Development 120, 2933–2943 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Moore, T. et al. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc. Natl. Acad. Sci. USA 94, 12509–12514. https://doi.org/10.1073/pnas.94.23.12509 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Reik, W. et al. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 4, 2379–2385. https://doi.org/10.1093/hmg/4.12.2379 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Constancia, M. et al. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. Nat. Genet. 26, 203–206. https://doi.org/10.1038/79930 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Murrell, A. et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription. EMBO Rep. 2, 1101–1106. https://doi.org/10.1093/embo-reports/kve248 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Sullivan, M. J., Taniguchi, T., Jhee, A., Kerr, N. & Reeve, A. E. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Oncogene 18, 7527–7534. https://doi.org/10.1038/sj.onc.1203096 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Cui, H. et al. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res. 62, 6442–6446 (2002).

    CAS 

    Google Scholar
     

  • Selenou, C., Brioude, F., Giabicani, E., Sobrier, M. L. & Netchine, I. IGF2: Development, genetic and epigenetic abnormalities. Cells 11, 66. https://doi.org/10.3390/cells11121886 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gregg, C. et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329, 643–648. https://doi.org/10.1126/science.1190830 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zamarbide, M. et al. Maternal imprinting on cognition markers of wild type and transgenic Alzheimer’s disease model mice. Sci. Rep. 8, 6434. https://doi.org/10.1038/s41598-018-24710-7 (2018).

    Article 
    CAS 

    Google Scholar
     

  • O’Leary, T. P. & Brown, R. E. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer’s disease: Effects of age, sex, albinism, and motor impairments. Genes Brain Behav. 21, e12794. https://doi.org/10.1111/gbb.12794 (2022).

    Article 

    Google Scholar
     

  • Rae, E. A. & Brown, R. E. The problem of genotype and sex differences in life expectancy in transgenic AD mice. Neurosci. Biobehav. Rev. 57, 238–251. https://doi.org/10.1016/j.neubiorev.2015.09.002 (2015).

    Article 

    Google Scholar
     

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Khachaturian, Z. S. Diagnosis of Alzheimer’s disease. Arch. Neurol. 42, 1097–1105. https://doi.org/10.1001/archneur.1985.04060100083029 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Balducci, C. et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 107, 2295–2300. https://doi.org/10.1073/pnas.0911829107 (2010).

    Article 

    Google Scholar
     

  • Fertan, E., Wong, A. A., Purdon, M. K., Weaver, I. C. G. & Brown, R. E. The effect of background strain on the behavioral phenotypes of the MDGA2(+/−) mouse model of autism spectrum disorder. Genes Brain Behav. 20, e12696. https://doi.org/10.1111/gbb.12696 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Kennedy, B. E., Hundert, A. S., Goguen, D., Weaver, I. C. G. & Karten, B. Presymptomatic alterations in amino acid metabolism and DNA methylation in the cerebellum of a murine model of Niemann–Pick type C disease. Am. J. Pathol. 186, 1582–1597. https://doi.org/10.1016/j.ajpath.2016.02.012 (2016).

    Article 
    CAS 

    Google Scholar
     

  • du Prel, J. B., Hommel, G., Rohrig, B. & Blettner, M. Confidence interval or p-value? Part 4 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 106, 335–339. https://doi.org/10.3238/arztebl.2009.0335 (2009).

    Article 

    Google Scholar
     

  • O’Brien, S. F. & Yi, Q. L. How do I interpret a confidence interval?. Transfusion 56, 1680–1683. https://doi.org/10.1111/trf.13635 (2016).

    Article 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. https://doi.org/10.3758/bf03193146 (2007).

    Article 

    Google Scholar
     

  • Bonham, L. W. et al. Insulin-like growth factor binding protein 2 is associated with biomarkers of Alzheimer’s disease pathology and shows differential expression in transgenic mice. Front. Neurosci. 12, 476. https://doi.org/10.3389/fnins.2018.00476 (2018).

    Article 

    Google Scholar
     

  • Eimer, W. A. & Vassar, R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol. Neurodegener. 8, 2. https://doi.org/10.1186/1750-1326-8-2 (2013).

    Article 
    CAS 

    Google Scholar
     

  • D’Mello, C. & Swain, M. G. Liver-brain inflammation axis. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G749-761. https://doi.org/10.1152/ajpgi.00184.2011 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Barucker, C. et al. Alzheimer amyloid peptide abeta42 regulates gene expression of transcription and growth factors. J. Alzheimers Dis. 44, 613–624. https://doi.org/10.3233/JAD-141902 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Andersen, J. V. et al. Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death Dis. 12, 954. https://doi.org/10.1038/s41419-021-04237-y (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liang, W. S. et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. USA 105, 4441–4446. https://doi.org/10.1073/pnas.0709259105 (2008).

    Article 

    Google Scholar
     

  • Wang, C. et al. Insulin-like growth factor 2 regulates the proliferation and differentiation of rat adipose-derived stromal cells via IGF-1R and IR. Cytotherapy 21, 619–630. https://doi.org/10.1016/j.jcyt.2018.11.010 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alfares, M. N., Perks, C. M., Hamilton-Shield, J. P. & Holly, J. M. P. Insulin-like growth factor-II in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. Am. J. Physiol. Endocrinol. Metab. 315, E1098–E1107. https://doi.org/10.1152/ajpendo.00409.2017 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ito, Y. et al. Age-related changes in the hepatic microcirculation in mice. Exp. Gerontol. 42, 789–797. https://doi.org/10.1016/j.exger.2007.04.008 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zoli, M. et al. Total and functional hepatic blood flow decrease in parallel with ageing. Age Ageing 28, 29–33. https://doi.org/10.1093/ageing/28.1.29 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Cai, H. et al. Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr. Alzheimer Res. 9, 5–17. https://doi.org/10.2174/156720512799015064 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Issa, J. P., Vertino, P. M., Boehm, C. D., Newsham, I. F. & Baylin, S. B. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc. Natl. Acad. Sci. USA 93, 11757–11762. https://doi.org/10.1073/pnas.93.21.11757 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kelijman, M. Age-related alterations of the growth hormone/insulin-like-growth-factor I axis. J. Am. Geriatr. Soc. 39, 295–307. https://doi.org/10.1111/j.1532-5415.1991.tb01654.x (1991).

    Article 
    CAS 

    Google Scholar
     

  • Bartke, A. et al. Insulin-like growth factor 1 (IGF-1) and aging: Controversies and new insights. Biogerontology 4, 1–8. https://doi.org/10.1023/a:1022448532248 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Faisal, M., Kim, H. & Kim, J. Sexual differences of imprinted genes’ expression levels. Gene 533, 434–438. https://doi.org/10.1016/j.gene.2013.10.006 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Citron, M. et al. Excessive production of amyloid beta-protein by peripheral cells of symptomatic and presymptomatic patients carrying the Swedish familial Alzheimer disease mutation. Proc. Natl. Acad. Sci. USA 91, 11993–11997 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Marques, M. A. et al. Peripheral amyloid-beta levels regulate amyloid-beta clearance from the central nervous system. J. Alzheimers Dis. 16, 325–329. https://doi.org/10.3233/JAD-2009-0964 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Baldeiras, I. et al. Peripheral oxidative damage in mild cognitive impairment and mild Alzheimer’s disease. J. Alzheimers Dis. 15, 117–128 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Hong, W. K. et al. Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem. Res. 32, 1483–1488. https://doi.org/10.1007/s11064-007-9336-7 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Huerta, P. et al. Insulin-like growth factor 2 (IGF2) protects against Huntington’s disease through the extracellular disposal of protein aggregates. Acta Neuropathol. 140, 737–764. https://doi.org/10.1007/s00401-020-02183-1 (2020).

    Article 
    CAS 

    Google Scholar
     

  • LeRoith, D., Holly, J. M. P. & Forbes, B. E. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol. Metab. 52, 101245 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Knight, E. M., Verkhratsky, A., Luckman, S. M., Allan, S. M. & Lawrence, C. B. Hypermetabolism in a triple-transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 33, 187–193. https://doi.org/10.1016/j.neurobiolaging.2010.02.003 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Giedraitis, V. et al. The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neurosci. Lett. 427, 127–131. https://doi.org/10.1016/j.neulet.2007.09.023 (2007).

    Article 
    CAS 

    Google Scholar
     

  • De, S. et al. Different soluble aggregates of Abeta42 can give rise to cellular toxicity through different mechanisms. Nat. Commun. 10, 1541. https://doi.org/10.1038/s41467-019-09477-3 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nagele, R. G., D’Andrea, M. R., Anderson, W. J. & Wang, H. Y. Intracellular accumulation of beta-amyloid(1–42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 110, 199–211. https://doi.org/10.1016/s0306-4522(01)00460-2 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Latty, S. L. et al. Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub. Elife https://doi.org/10.7554/eLife.31377 (2018).

    Article 

    Google Scholar
     

  • Hughes, C. et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun. Biol. 3, 79. https://doi.org/10.1038/s42003-020-0792-9 (2020).

    Article 

    Google Scholar
     

  • Smith, A. R. et al. The histone modification H3K4me3 is altered at the ANK1 locus in Alzheimer’s disease brain. Future Sci. OA 7, FSO665. https://doi.org/10.2144/fsoa-2020-0161 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X., Wang, L., Yu, C., Yu, D. & Yu, G. Histone acetylation modifiers in the pathogenesis of Alzheimer’s disease. Front. Cell Neurosci. 9, 226. https://doi.org/10.3389/fncel.2015.00226 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ding, H., Dolan, P. J. & Johnson, G. V. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J. Neurochem. 106, 2119–2130. https://doi.org/10.1111/j.1471-4159.2008.05564.x (2008).

    Article 
    CAS 

    Google Scholar
     

  • Klein, H. U. et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 22, 37–46. https://doi.org/10.1038/s41593-018-0291-1 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-023-29248-x

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]