Connect with us

Health

Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies

Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies

 


  • Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Predictive markers of honey bee colony collapse. PLoS ONE 7, e32151 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dainat, B. & Neumann, P. Clinical signs of deformed wing virus infection are predictive markers for honey bee colony losses. J. Invertebr. Pathol. 112, 278–280 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • van Dooremalen, C. et al. Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS ONE 7, e36285 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genersch, E. et al. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fries, I., Martin-Hernandez, R., Meana, A., Garcia-Palencia, P. & Higes, M. Natural infections of Nosema ceranae in European honey bees. J. Apic. Res. 45, 230–233 (2006).

    Article 

    Google Scholar
     

  • Higes, M. et al. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 10, 2659–2669 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Higes, M. et al. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol. Rep. 1, 110–113 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Botías, C., Martín-Hernández, R., Barrios, L., Meana, A. & Higes, M. Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Vet. Res. 44, 25 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Hernandez, R. et al. Outcome of colonization of Apis mellifera by Nosema ceranae. Appl. Environ. Microbiol. 73, 6331–6338 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornman, R. S. et al. Pathogen webs in collapsing honey bee colonies. PLoS ONE 7, e43562 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tentcheva, D. et al. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl. Environ. Microbiol. 70, 7185–7191 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berenyi, O., Bakonyi, T., Derakhshifar, I., Köglberger, H. & Nowotny, N. Occurence of six honeybee viruses in diseased Austrian apiaries. Appl. Environ. Microbiol. 72, 2414–2420 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Traynor, K. S. et al. Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fatbody tissue and not hemolymph. Proc. Natl Acad. Sci. USA 116, 1792–1801 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanni, V., Değirmenci, L., Annoscia, D., Scheiner, R. & Nazzi, F. The reduced brood nursing by mite-infested honey bees depends on their accelerated behavioral maturation. J. Insect. Physiol. 109, 47–54 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Jong, D., Morse, R. A. & Eickwort, G. C. Mite pests of honey bees. Ann. Rev. Entomol. 27, 229–252 (1982).

    Article 

    Google Scholar
     

  • Ball, B. V. The association of Varroa jacobsoni with virus diseases of honey bees. Exp. Appl. Acarol. 19, 607–613 (1983).


    Google Scholar
     

  • Ball, B. V. Varroa jacobsoni as a virus vector. In Present status of varroatosis in Europe and progress in the varroa mite control. (ed. Cavalloro R) (1989).

  • Bailey, L., Carpenter, J. M. & Woods, R. D. Egypt bee virus and Australian isolates of Kashmir bee virus. J. Gen. Virol. 43, 641–647 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Bowen-Walker, P. L., Martin, S. J. & Gunn, A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. Pathol. 73, 101–106 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, L. & Ball, B. V. Honey Bee Pathology. (Academic Press, 1991).

  • de Miranda, J. R. et al. Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970’s Egypt. Virol. J. 19, 12 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mordecai, G. J., Wilfert, L., Martin, S. J., Jones, I. M. & Schroeder, D. C. Diversity in a honey bee pathogen: first report of a third master variant of the Deformed Wing Virus quasispecies. Int. Soc. Micro. Ecol. 10, 1264–1273 (2016).

    CAS 

    Google Scholar
     

  • Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ongus, J. R. et al. Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol. 85, 3747–3755 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gisder, S., Möckel, N., Eisenhardt, D. & Genersch, E. In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ. Microbiol. 20, 4612–4628 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gisder, S. & Genersch, E. Direct evidence for infection of Varroa destructor mites with the bee-pathogenic deformed wing virus variant B, but not variant A, via fluorescence in situ hybridization analysis. J. Virol. 95, e01786–01720 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posada-Florez, F. et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a nonpropagative manner. Sci. Rep. 9, 12445 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. R. Soc. B 283, 20160811 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gisder, S., Aumeier, P. & Genersch, E. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90, 463–467 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue, C. & Genersch, E. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, S. J. The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J. Appl. Ecol. 38, 1082–1093 (2001).

    Article 

    Google Scholar
     

  • Martin, S. J., Hogarth, A., van Breda, J. & Perrett, J. A scientific note on Varroa jacobsoni Oudemans and the collapse of Apis mellifera colonies in the United Kingdom. Apidologie 29, 369–370 (1998).

    Article 

    Google Scholar
     

  • Keeling, P. J. & Fast, N. M. Microsporidia: Biology and evolution of highly reduced intracellular parasites. Annu. Rev. Microbiol. 56, 93–116 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zander, E. Tierische Parasiten als Krankheitserreger bei der Biene. Münchener Bienenztg. 31, 196–204 (1909).


    Google Scholar
     

  • Chemurot, M., De Smet, L., Brunain, M., De Rycke, R. & de Graaf, D. C. Nosema neumanni n. sp. (Microsporidia, Nosematidae), a newmicrosporidian parasite of honeybees, Apis mellifera in Uganda. Eur. J. Protistol. 61, 13–19 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fries, I., Feng, F., daSilva, A., Slemenda, S. B. & Pieniazek, N. J. Nosema ceranae n sp (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356–365 (1996).

    Article 

    Google Scholar
     

  • Klee, J. et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the Western honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 1–10 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Paxton, R. J., Klee, J., Korpela, S. & Fries, I. Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie 38, 558–565 (2007).

    Article 

    Google Scholar
     

  • Botías, C. et al. The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Res. Vet. Sci. 93, 150–155 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chauzat, M. P. et al. Presence of Nosema ceranae in French honey bee colonies. J. Apic. Res. 46, 127–128 (2007).

    Article 

    Google Scholar
     

  • Higes, M., Martín-Hernández, R. & Meana, A. Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41, 375–392 (2010).

    Article 

    Google Scholar
     

  • Gisder, S., Schüler, V., Horchler, L. L., Groth, D. & Genersch, E. Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: Continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but no general replacement of Nosema apis. Front. Cell Infect. Microbiol. 7, 301 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenoy, S., Rueda, C., Higes, M., Martín-Hernandez, R. & del Aguila, C. High-level resistance of Nosema ceranae, a parasite of the honeybee, to temperature and desiccation. Appl. Environ. Microbiol. 75, 6886–6889 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gisder, S. et al. Five-year cohort study of Nosema spp. in Germany: does climate shape virulence and assertiveness of Nosema ceranae? Appl. Environ. Microbiol. 76, 3032–3038 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin-Hernandez, R. et al. Effect of temperature on the biotic potential of honeybee microsporidia. Appl. Environ. Microbiol. 75, 2554–2557 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horchler, L., Gisder, S., Boecking, O. & Genersch, E. Diagnostic value of faecal spots on and in honey bee (Apis mellifera) hives. Berl. Münch Tier.ärztl Wochenschr. 132, 41–48 (2019).


    Google Scholar
     

  • Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 103, S73–S79 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Fries, I. Nosema apis – A parasite in the honey bee colony. Bee World 74, 5–19 (1993).

    Article 

    Google Scholar
     

  • Bailey, L. Nosema apis and dysentery of the honey bee. J. Apic. Res. 6, 121–125 (1967).

    Article 

    Google Scholar
     

  • Bigliardi, E. & Sacchi, L. Cell biology and invasion of the microsporidia. Microbes Infect. 3, 373–379 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franzen, C. How do microsporidia invade cells? Folia Parasitol. 52, 36–40 (2005).

    Article 

    Google Scholar
     

  • Gisder, S., Möckel, N., Linde, A. & Genersch, E. A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee pathogenic microsporidia. Environ. Microbiol. 13, 404–413 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailey, L. The infection of the ventriculus of the adult honeybee by Nosema apis (Zander). Parasitology 45, 86–94 (1955).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guimarães-Cestaro, L. et al. Nosema ceranae (Microsporidia: Nosematidae) does not cause collapse of colonies of Africanized Apis mellifera (Hymenoptera: Apidae) in tropical climate. Sociobiology 67, 408–416 (2020).

    Article 

    Google Scholar
     

  • Fernández, J. M. et al. Asymptomatic presence of Nosema spp. in Spanish commercial apiaries. J. Invertebr. Pathol. 111, 106–110 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Stevanovic, J. et al. Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie 42, 49–58 (2011).

    Article 

    Google Scholar
     

  • Guzman-Novoa, E. et al. Nosema ceranae has parasitized Africanized honey bees in Mexico since at least 2004. J. Apic. Res. 50, 167–169 (2011).

    Article 

    Google Scholar
     

  • Jacques, A. et al. A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS ONE 12, e0172591 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Invernizzi, C. et al. Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. J. Invertebr. Pathol. 101, 150–153 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, G. R., Shutler, D. & Rogers, R. E. L. Effects at Nearctic north-temperate latitudes of indoor versus outdoor overwintering on the microsporidium Nosema ceranae and Western honey bees (Apis mellifera). J. Invertebr. Pathol. 104, 4–7 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Higes, M., Garcia-Palencia, P., Martin-Hernandez, R. & Meana, A. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J. Invertebr. Pathol. 94, 211–217 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Cepero, A. et al. Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Res. Notes 7, 649 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences. 2nd edn (Lawrence Erlbaum Associates, Hillsdale, 1988).

  • Hedtke, K., Jensen, P. M., Jensen, A. B. & Genersch, E. Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. J. Invertebr. Pathol. 108, 167–173 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Fries, I. et al. Standard methods for Nosema research. J. Apicult. Res. https://doi.org/10.3896/IBRA.3891.3852.3891.3814 (2013).

  • Dietemann, V. et al. Standard methods for Varroa research. J. Apic. Res. 52, 28 (2013).

    Article 

    Google Scholar
     

  • Anonymous. Nosemosis of honey bees (Infection of honey bees with Nosema spp.). OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (OIE World Organisation for Animal Health, 2021).

  • Doull, K. & Cellier, K. A survey of incidence of Nosema disease (Nosema apis Zander) of the honey bee in South Australia. J. Insect Pathol. 3, 280–288 (1961).


    Google Scholar
     

  • Doull, K. M. The effects of time of day and method of sampling on the determination of Nosema disease in beehives. J. Invertebr. Pathol. 7, 1–4 (1965).

    Article 

    Google Scholar
     

  • Fries, I., Ekbohm, G. & Villumstad, E. Nosema apis, sampling techniques and honey yield. J. Apic. Res. 23, 102–105 (1984).

    Article 

    Google Scholar
     

  • Pirk, C. W. W. et al. Statistical guidelines for Apis mellifera research. J. Apic. Res. 52, 1–24 (2013).

    Article 

    Google Scholar
     

  • Gisder, S. & Genersch, E. Molecular differentiation of Nosema apis and Nosema ceranae based on species–specific sequence differences in a protein coding gene. J. Invertebr. Pathol. 113, 1–6 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R Development Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2021).

  • Schauberger, P. et al. openxlsx: Read, Write and Edit xlsx Files (Version 4.2.5). https://CRAN.R-project.org/package=openxlsx (2021).

  • Therneau, T. & Atkinson, B. rpart: Recursive Partitioning and Regression Trees (Version 4.1-15). https://CRAN.R-project.org/package=rpart (2019).

  • Williams, G. J. Data Mining with Rattle and R: The art of excavating data for knowledge discovery. (Springer, 2011).

  • Meyer, D., Zeileis, A. & Hornik, K. Residual-based shadings for visualizing (conditional) independence. J. Comput. Graph Stat. 16, 507–525 (2007).

    Article 

    Google Scholar
     

  • Meyer, D., Zeileis, A. & Hornik, K. vcd: Visualizing Categorical Data (Version 1.4-8). https://CRAN.R-project.org/package=vcd (2020).

  • Meyer, D., Zeileis, A. & Hornik, K. The strucplot framework: visualizing multi-way contingency tables with vcd. J. Stat. Softw. 17, 1–48 (2006).

    Article 

    Google Scholar
     

  • Hijmans, R. J. et al. GADM database of Global Administrative Areas https://gadm.org (2016).

  • South A. rnaturalearth: World Map Data from Natural Earth (Version 0.1.0). https://CRAN.R-project.org/package=rnaturalearth (2017).

  • Hijmans, R. J. raster: Geographic Data Analysis and Modeling (Version 3.5-15). https://CRAN.R-project.org/package=raster (2022).

  • Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer, 2016).

  • Pebesma, E. J. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).

    Article 

    Google Scholar
     

  • Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied spatial data analysis with R. 2nd edn. (Springer, 2013).

  • Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R. N. 5, 9–13 (2005).


    Google Scholar
     

  • Bivand, R. S. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (“GEOS”) (Version 0.5-9). https://CRAN.R-project.org/package=rgeos (2021).

  • Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 21, 1–20 (2007).

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s42003-023-04587-7

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]