Connect with us

Health

Bioinformatics in urology — molecular characterization of pathophysiology and response to treatment

Bioinformatics in urology — molecular characterization of pathophysiology and response to treatment

 


  • Goldenberg, S. L., Nir, G. & Salcudean, S. E. A new era: artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 16, 391–403 (2019).

    PubMed 

    Google Scholar
     

  • Bentellis, I., Guerin, S., Khene, Z. E., Khavari, R. & Peyronnet, B. Artificial intelligence in functional urology: how it may shape the future. Curr. Opin. Urol. 31, 385–390 (2021).

    PubMed 

    Google Scholar
     

  • Brodie, A. et al. Artificial intelligence in urological oncology: an update and future applications. Urol. Oncol. 39, 379–399 (2021).

    PubMed 

    Google Scholar
     

  • Bzdok, D., Altman, N. & Krzywinski, M. Statistics versus machine learning. Nat. Methods 15, 233–234 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sidey-Gibbons, J. A. M. & Sidey-Gibbons, C. J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 19, 64 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo Vercio, L. et al. Supervised machine learning tools: a tutorial for clinicians. J. Neural Eng. 17, 062001 (2020).


    Google Scholar
     

  • Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20150202 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashidi, H. H., Tran, N. K., Betts, E. V., Howell, L. P. & Green, R. Artificial intelligence and machine learning in pathology: the present landscape of supervised methods. Acad. Pathol. 6, 2374289519873088 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinn, T. P., Nguyen, T., Lee, S. C. & Venkatesh, S. Cancer as a tissue anomaly: classifying tumor transcriptomes based only on healthy data. Front. Genet. 10, 599 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yakimovich, A., Beaugnon, A., Huang, Y. & Ozkirimli, E. Labels in a haystack: approaches beyond supervised learning in biomedical applications. Patterns 2, 100383 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckardt, J. N., Bornhauser, M., Wendt, K. & Middeke, J. M. Semi-supervised learning in cancer diagnostics. Front. Oncol. 12, 960984 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulten, W. et al. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. 21, 233–241 (2020).

    PubMed 

    Google Scholar
     

  • Marini, N., Otalora, S., Muller, H. & Atzori, M. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: an experiment on prostate histopathology image classification. Med. Image Anal. 73, 102165 (2021).

    PubMed 

    Google Scholar
     

  • Doan, S., Conway, M., Phuong, T. M. & Ohno-Machado, L. Natural language processing in biomedicine: a unified system architecture overview. Methods Mol. Biol. 1168, 275–294 (2014).

    PubMed 

    Google Scholar
     

  • Finne, P. et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology 56, 418–422 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Remzi, M. et al. An artificial neural network to predict the outcome of repeat prostate biopsies. Urology 62, 456–460 (2003).

    PubMed 

    Google Scholar
     

  • Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 40–55 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, A. B. et al. Artificial intelligence applications in urology: reporting standards to achieve fluency for urologists. Urol. Clin. North. Am. 49, 65–117 (2022).

    PubMed 

    Google Scholar
     

  • Thykjaer, T. et al. Identification of gene expression patterns in superficial and invasive human bladder cancer. Cancer Res. 61, 2492–2499 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, J. et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Singh, D. et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Dyrskjot, L. et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat. Genet. 33, 90–96 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Blaveri, E. et al. Bladder cancer outcome and subtype classification by gene expression. Clin. Cancer Res. 11, 4044–4055 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Rhodes, D. R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).


    Google Scholar
     

  • The Cancer Genome Atlas Research Network The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

    PubMed Central 

    Google Scholar
     

  • Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23, 3392–3406 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    PubMed Central 

    Google Scholar
     

  • The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).


    Google Scholar
     

  • Veldman-Jones, M. H. et al. Evaluating robustness and sensitivity of the NanoString Technologies nCounter platform to enable multiplexed gene expression analysis of clinical samples. Cancer Res. 75, 2587–2593 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, H. et al. Comprehensive review of web servers and bioinformatics tools for cancer prognosis analysis. Front. Oncol. 10, 68 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed 

    Google Scholar
     

  • Chandrashekar, D. S. et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25, 18–27 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. M. et al. TCPA v3.0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol. Cell Proteom. 18, S15–S25 (2019).

    CAS 

    Google Scholar
     

  • Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, F. et al. Multimodal single-cell analyses outline the immune microenvironment and therapeutic effectors of interstitial cystitis/bladder pain syndrome. Adv. Sci. 9, e2106063 (2022).


    Google Scholar
     

  • Peng, L. et al. Integrating single-cell RNA sequencing with spatial transcriptomics reveals immune landscape for interstitial cystitis. Signal Transduct. Target. Ther. 7, 161 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henry, G. H. et al. A cellular anatomy of the normal adult human prostate and prostatic urethra. Cell Rep. 25, 3530–3542.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karthaus, W. R. et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 368, 497–505 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zurauskiene, J. & Yau, C. pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinforma. 17, 140 (2016).


    Google Scholar
     

  • Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974–1980 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, Z. A. et al. Tutorial: guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nat. Protoc. 16, 2749–2764 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proc. Natl Acad. Sci. USA 118, e2103240118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, B. et al. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun. Biol. 3, 778 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, H. et al. Single-cell analysis of human primary prostate cancer reveals the heterogeneity of tumor-associated epithelial cell states. Nat. Commun. 13, 141 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiebinger, G. et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176, 928–943.e2 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nat. Cell Biol. 23, 87–98 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat. Commun. 11, 5077 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T., Wu, X., Wang, H. Y. & Chen, L. Immune contexture defined by single cell technology for prognosis prediction and immunotherapy guidance in cancer. Cancer Commun. 39, 21 (2019).


    Google Scholar
     

  • Tuong, Z. K. et al. Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Rep. 37, 110132 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. J. et al. Heterogeneity of tumor microenvironment is associated with clinical prognosis of non-clear cell renal cell carcinoma: a single-cell genomics study. Cell Death Dis. 13, 50 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Myeloid cell-associated resistance to PD-1/PD-L1 blockade in urothelial cancer revealed through bulk and single-cell RNA sequencing. Clin. Cancer Res. 27, 4287–4300 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R. & Haque, A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 14, 68 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longo, S. K., Guo, M. G., Ji, A. L. & Khavari, P. A. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat. Rev. Genet. 22, 627–644 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, A., Barkley, D., Franca, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dries, R. et al. Advances in spatial transcriptomic data analysis. Genome Res. 31, 1706–1718 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, X., Su, A., Tran, M. & Nguyen, Q. SpaCell: integrating tissue morphology and spatial gene expression to predict disease cells. Bioinformatics 36, 2293–2294 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

    PubMed 

    Google Scholar
     

  • Edsgard, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods 15, 339–342 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 3, 565 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 49, e50 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. 40, 517–526 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergenstrahle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40, 476–479 (2022).

    PubMed 

    Google Scholar
     

  • Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cang, Z. & Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat. Commun. 11, 2084 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9, 2419 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Ma, S. & Ruzzo, W. L. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Sci. Rep. 10, 3490 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, K. et al. Identification of novel biomarkers in Hunner’s interstitial cystitis using the CIBERSORT, an algorithm based on machine learning. BMC Urol. 21, 109 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamper, M. et al. Gene expression profile of bladder tissue of patients with ulcerative interstitial cystitis. BMC Genom. 10, 199 (2009).


    Google Scholar
     

  • Colaco, M. et al. Correlation of gene expression with bladder capacity in interstitial cystitis/bladder pain syndrome. J. Urol. 192, 1123–1129 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Lindskrog, S. V. et al. An integrated multi-omics analysis identifies prognostic molecular subtypes of non-muscle-invasive bladder cancer. Nat. Commun. 12, 2301 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. Prognostic significance of lineage diversity in bladder cancer revealed by single-cell sequencing. Front. Genet. 13, 862634 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez, A. & Liao, J. C. Emerging endoscopic imaging technologies for bladder cancer detection. Curr. Urol. Rep. 15, 406 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shkolyar, E. et al. Augmented bladder tumor detection using deep learning. Eur. Urol. 76, 714–718 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, N. et al. Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors. Sci. Rep. 11, 11629 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. An artificial intelligence system for the detection of bladder cancer via cystoscopy: a multicenter diagnostic study. J. Natl Cancer Inst. 114, 220–227 (2022).

    PubMed 

    Google Scholar
     

  • Negassi, M., Suarez-Ibarrola, R., Hein, S., Miernik, A. & Reiterer, A. Application of artificial neural networks for automated analysis of cystoscopic images: a review of the current status and future prospects. World J. Urol. 38, 2349–2358 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, E. O., Pradere, B. & Teoh, J. Y., European Association of Urology – Young Academic Urologists Urothelial Carcinoma Working Group The use of artificial intelligence for the diagnosis of bladder cancer: a review and perspectives. Curr. Opin. Urol. 31, 397–403 (2021).

    PubMed 

    Google Scholar
     

  • Lenis, A. T. & Litwin, M. S. Does artificial intelligence meaningfully enhance cystoscopy. J. Natl Cancer Inst. 114, 174–175 (2022).

    PubMed 

    Google Scholar
     

  • Sanghvi, A. B., Allen, E. Z., Callenberg, K. M. & Pantanowitz, L. Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathol. 127, 658–666 (2019).

    PubMed 

    Google Scholar
     

  • Nojima, S. et al. A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Cancer Cytopathol. 129, 984–995 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lebret, T. et al. Artificial intelligence to improve cytology performances in bladder carcinoma detection: results of the VisioCyt test. BJU Int. 129, 356–363 (2022).

    PubMed 

    Google Scholar
     

  • Sanchez-Carbayo, M., Socci, N. D., Lozano, J., Saint, F. & Cordon-Cardo, C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol. 24, 778–789 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, W. J. et al. Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol. Cancer 9, 3 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindgren, D. et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res. 70, 3463–3472 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Sjodahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    PubMed 

    Google Scholar
     

  • Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kardos, J. et al. Development and validation of a NanoString BASE47 bladder cancer gene classifier. PLoS ONE 15, e0243935 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556.e25 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sjodahl, G., Eriksson, P., Liedberg, F. & Hoglund, M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J. Pathol. 242, 113–125 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batista da Costa, J. et al. Molecular characterization of neuroendocrine-like bladder cancer. Clin. Cancer Res. 25, 3908–3920 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • de Jong, J. J. et al. Long non-coding RNAs identify a subset of luminal muscle-invasive bladder cancer patients with favorable prognosis. Genome Med. 11, 60 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grivas, P. et al. Validation of a neuroendocrine-like classifier confirms poor outcomes in patients with bladder cancer treated with cisplatin-based neoadjuvant chemotherapy. Urol. Oncol. 38, 262–268 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Hurst, C. D. et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell 32, 701–715.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kates, M. et al. Adaptive immune resistance to intravesical BCG in non-muscle invasive bladder cancer: implications for prospective BCG-unresponsive trials. Clin. Cancer Res. 26, 882–891 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Strandgaard, T. et al. Elevated T-cell exhaustion and urinary tumor DNA levels are associated with bacillus Calmette-Guérin failure in patients with non-muscle-invasive bladder cancer. Eur. Urol. 82, 646–656 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Kamoun, A. et al. A consensus molecular classification of muscle-invasive bladder cancer. Eur. Urol. 77, 420–433 (2020).

    PubMed 

    Google Scholar
     

  • de Jong, J. J. et al. Gene expression profiling of muscle-invasive bladder cancer with secondary variant histology. Am. J. Clin. Pathol. 156, 895–905 (2021).

    PubMed 

    Google Scholar
     

  • Lotan, Y. et al. Patients with muscle-invasive bladder cancer with nonluminal subtype derive greatest benefit from platinum based neoadjuvant chemotherapy. J. Urol. 207, 541–550 (2022).

    PubMed 

    Google Scholar
     

  • Morera, D. S. et al. Clinical parameters outperform molecular subtypes for predicting outcome in bladder cancer: results from multiple cohorts, including TCGA. J. Urol. 203, 62–72 (2020).

    PubMed 

    Google Scholar
     

  • Woerl, A. C. et al. Deep learning predicts molecular subtype of muscle-invasive bladder cancer from conventional histopathological slides. Eur. Urol. 78, 256–264 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Roubal, K., Myint, Z. W. & Kolesar, J. M. Erdafitinib: a novel therapy for FGFR-mutated urothelial cancer. Am. J. Health Syst. Pharm. 77, 346–351 (2020).

    PubMed 

    Google Scholar
     

  • Loeffler, C. M. L. et al. Artificial intelligence-based detection of FGFR3 mutational status directly from routine histology in bladder cancer: a possible preselection for molecular testing? Eur. Urol. Focus. 8, 472–479 (2021).

    PubMed 

    Google Scholar
     

  • McConkey, D. J. et al. Therapeutic opportunities in the intrinsic subtypes of muscle-invasive bladder cancer. Hematol. Oncol. Clin. North. Am. 29, 377–394 (2015).

    PubMed 

    Google Scholar
     

  • Motterle, G., Andrews, J. R., Morlacco, A. & Karnes, R. J. Predicting response to neoadjuvant chemotherapy in bladder cancer. Eur. Urol. Focus. 6, 642–649 (2020).

    PubMed 

    Google Scholar
     

  • Takata, R. et al. Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin. Cancer Res. 11, 2625–2636 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Kato, Y. et al. Predicting response of bladder cancers to gemcitabine and carboplatin neoadjuvant chemotherapy through genome-wide gene expression profiling. Exp. Ther. Med. 2, 47–56 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Als, A. B. et al. Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer. Clin. Cancer Res. 13, 4407–4414 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Kato, Y. et al. A prospective study to examine the accuracies and efficacies of prediction systems for response to neoadjuvant chemotherapy for muscle invasive bladder cancer. Oncol. Lett. 16, 5775–5784 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McConkey, D. J. et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naive urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur. Urol. 69, 855–862 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Seiler, R. et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur. Urol. 72, 544–554 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Moschini, M. et al. Characteristics and clinical significance of histological variants of bladder cancer. Nat. Rev. Urol. 14, 651–668 (2017).

    PubMed 

    Google Scholar
     

  • Warrick, J. I. et al. Intratumoral heterogeneity of bladder cancer by molecular subtypes and histologic variants. Eur. Urol. 75, 18–22 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sjodahl, G. et al. Molecular subtypes as a basis for stratified use of neoadjuvant chemotherapy for muscle-invasive bladder cancer – a narrative review. Cancers 14, 1692 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellmunt, J., Powles, T. & Vogelzang, N. J. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treat. Rev. 54, 58–67 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. The Cancer Genome Atlas expression subtypes stratify response to checkpoint inhibition in advanced urothelial cancer and identify a subset of patients with high survival probability. Eur. Urol. 75, 961–964 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Korpal, M. et al. Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer. Nat. Commun. 8, 103 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Necchi, A. et al. Impact of molecular subtyping and immune infiltration on pathological response and outcome following neoadjuvant pembrolizumab in muscle-invasive bladder cancer. Eur. Urol. 77, 701–710 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Havaleshko, D. M. et al. Prediction of drug combination chemosensitivity in human bladder cancer. Mol. Cancer Ther. 6, 578–586 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. C., Baras, A. S., Lee, J. K. & Theodorescu, D. The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Cancer Res. 70, 1753–1758 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flaig, T. W. et al. A randomized phase II study of coexpression extrapolation (COXEN) with neoadjuvant chemotherapy for bladder cancer (SWOG S1314; NCT02177695). Clin. Cancer Res. 27, 2435–2441 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, J. et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat. Commun. 11, 5485 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barabasi, A. L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menche, J. et al. Disease networks. Uncovering disease–disease relationships through the incomplete interactome. Science 347, 1257601 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Cha, K. H. et al. Bladder cancer treatment response assessment in CT using radiomics with deep-learning. Sci. Rep. 7, 8738 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Pettersson, A. et al. The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis. Cancer Epidemiol. Biomark. Prev. 21, 1497–1509 (2012).


    Google Scholar
     

  • Adamo, P. & Ladomery, M. R. The oncogene ERG: a key factor in prostate cancer. Oncogene 35, 403–414 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Rosen, P. et al. Clinical potential of the ERG oncoprotein in prostate cancer. Nat. Rev. Urol. 9, 131–137 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, B. S. et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18, 11–22 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, S. et al. Integrated classification of prostate cancer reveals a novel luminal subtype with poor outcome. Cancer Res. 76, 4948–4958 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, S. G. et al. Associations of luminal and basal subtyping of prostate cancer with prognosis and response to androgen deprivation therapy. JAMA Oncol. 3, 1663–1672 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Signoretti, S. et al. p63 is a prostate basal cell marker and is required for prostate development. Am. J. Pathol. 157, 1769–1775 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoyanova, T. et al. Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proc. Natl Acad. Sci. USA 110, 20111–20116 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, J. et al. A comparative study of PCS and PAM50 prostate cancer classification schemes. Prostate Cancer Prostatic Dis. 24, 733–742 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosley, J. D. & Keri, R. A. Cell cycle correlated genes dictate the prognostic power of breast cancer gene lists. BMC Med. Genom. 1, 11 (2008).


    Google Scholar
     

  • Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 12, 245–255 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuzick, J. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 106, 1095–1099 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karnes, R. J. et al. Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J. Urol. 190, 2047–2053 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, E. A. et al. Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology 90, 148–152 (2016).

    PubMed 

    Google Scholar
     

  • Klein, E. A. et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur. Urol. 66, 550–560 (2014).

    PubMed 

    Google Scholar
     

  • Van Den Eeden, S. K. et al. A biopsy-based 17-gene genomic prostate score as a predictor of metastases and prostate cancer death in surgically treated men with clinically localized disease. Eur. Urol. 73, 129–138 (2018).

    PubMed 

    Google Scholar
     

  • Brooks, M. A. et al. GPS assay association with long-term cancer outcomes: twenty-year risk of distant metastasis and prostate cancer-specific mortality. JCO Precis. Oncol. 5, 325 (2021).


    Google Scholar
     

  • Hu, J. C. et al. Clinical utility of gene expression classifiers in men with newly diagnosed prostate cancer. JCO Precis. Oncol. 2, 163 (2018).


    Google Scholar
     

  • Fine, N. D., LaPolla, F., Epstein, M., Loeb, S. & Dani, H. Genomic classifiers for treatment selection in newly diagnosed prostate cancer. BJU Int. 124, 578–586 (2019).

    PubMed 

    Google Scholar
     

  • Karnes, R. J. et al. Development and validation of a prostate cancer genomic signature that predicts early ADT treatment response following radical prostatectomy. Clin. Cancer Res. 24, 3908–3916 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, F. Y. et al. Association of molecular subtypes with differential outcome to apalutamide treatment in nonmetastatic castration-resistant prostate cancer. JAMA Oncol. 7, 1005–1014 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, M. R. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. 378, 1408–1418 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 46, D649–D655 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Snow, P. B., Smith, D. S. & Catalona, W. J. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J. Urol. 152, 1923–1926 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Mosquera-Lopez, C., Agaian, S., Velez-Hoyos, A. & Thompson, I. Computer-aided prostate cancer diagnosis from digitized histopathology: a review on texture-based systems. IEEE Rev. Biomed. Eng. 8, 98–113 (2015).

    PubMed 

    Google Scholar
     

  • Turkbey, B. & Haider, M. A. Deep learning-based artificial intelligence applications in prostate MRI: brief summary. Br. J. Radiol. 95, 20210563 (2022).

    PubMed 

    Google Scholar
     

  • Suarez-Ibarrola, R. et al. Artificial intelligence in magnetic resonance imaging-based prostate cancer diagnosis: where do we stand in 2021? Eur. Urol. Focus. 8, 409–417 (2022).

    PubMed 

    Google Scholar
     

  • Ferro, M. et al. Radiomics in prostate cancer: an up-to-date review. Ther. Adv. Urol. 14, 17562872221109020 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baydoun, A. et al. Artificial intelligence applications in prostate cancer. Prostate Cancer Prostatic Dis. https://doi.org/10.1038/s41391-023-00684-0 (2023).

  • Doyle, S., Feldman, M., Tomaszewski, J. & Madabhushi, A. A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans. Biomed. Eng. 59, 1205–1218 (2012).

    PubMed 

    Google Scholar
     

  • Berney, D. M. et al. The reasons behind variation in Gleason grading of prostatic biopsies: areas of agreement and misconception among 266 European pathologists. Histopathology 64, 405–411 (2014).

    PubMed 

    Google Scholar
     

  • Nir, G. et al. Automatic grading of prostate cancer in digitized histopathology images: learning from multiple experts. Med. Image Anal. 50, 167–180 (2018).

    PubMed 

    Google Scholar
     

  • Strom, P. et al. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncol. 21, 222–232 (2020).

    PubMed 

    Google Scholar
     

  • Pantanowitz, L. et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. Lancet Digit. Health 2, e407–e416 (2020).

    PubMed 

    Google Scholar
     

  • Nagpal, K. et al. Development and validation of a deep learning algorithm for Gleason grading of prostate cancer from biopsy specimens. JAMA Oncol. 6, 1372–1380 (2020).

    PubMed 

    Google Scholar
     

  • Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Development and validation of an artificial intelligence-powered platform for prostate cancer grading and quantification. JAMA Netw. Open. 4, e2132554 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • da Silva, L. M. et al. Independent real-world application of a clinical-grade automated prostate cancer detection system. J. Pathol. 254, 147–158 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Wong, N. C., Lam, C., Patterson, L. & Shayegan, B. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. BJU Int. 123, 51–57 (2019).

    PubMed 

    Google Scholar
     

  • Eksi, M. et al. Machine learning algorithms can more efficiently predict biochemical recurrence after robot-assisted radical prostatectomy. Prostate 81, 913–920 (2021).

    PubMed 

    Google Scholar
     

  • Tan, Y. G. et al. Incorporating artificial intelligence in urology: supervised machine learning algorithms demonstrate comparative advantage over nomograms in predicting biochemical recurrence after prostatectomy. Prostate 82, 298–305 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, L. et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer 91, 66–73 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Gandaglia, G. et al. A novel nomogram to identify candidates for extended pelvic lymph node dissection among patients with clinically localized prostate cancer diagnosed with magnetic resonance imaging-targeted and systematic biopsies. Eur. Urol. 75, 506–514 (2019).

    PubMed 

    Google Scholar
     

  • Luzzago, S. et al. A novel nomogram to identify candidates for active surveillance amongst patients with International Society of Urological Pathology (ISUP) grade group (GG) 1 or ISUP GG2 prostate cancer, according to multiparametric magnetic resonance imaging findings. BJU Int. 126, 104–113 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wessels, F. et al. Deep learning approach to predict lymph node metastasis directly from primary tumour histology in prostate cancer. BJU Int. 128, 352–360 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linehan, W. M. & Ricketts, C. J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16, 539–552 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Beuselinck, B. et al. Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting. Clin. Cancer Res. 21, 1329–1339 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Rini, B. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 16, 676–685 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Motzer, R. J. et al. Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade. Cancer Cell 38, 803–817.e4 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buttner, F. A. et al. A novel molecular signature identifies mixed subtypes in renal cell carcinoma with poor prognosis and independent response to immunotherapy. Genome Med. 14, 105 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motzer, R. J. et al. Molecular characterization of renal cell carcinoma tumors from a phase III anti-angiogenic adjuvant therapy trial. Nat. Commun. 13, 5959 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rini, B. I. et al. Validation of the 16-gene recurrence score in patients with locoregional, high-risk renal cell carcinoma from a phase III trial of adjuvant sunitinib. Clin. Cancer Res. 24, 4407–4415 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    PubMed 

    Google Scholar
     

  • McDaniel, A. S. et al. Genomic profiling of penile squamous cell carcinoma reveals new opportunities for targeted therapy. Cancer Res. 75, 5219–5227 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Necchi, A. et al. Gene expression profiling of advanced penile squamous cell carcinoma receiving cisplatin-based chemotherapy improves prognostication and identifies potential therapeutic targets. Eur. Urol. Focus. 4, 733–736 (2018).

    PubMed 

    Google Scholar
     

  • Macedo, J. et al. Genomic profiling reveals the pivotal role of hrHPV driving copy number and gene expression alterations, including mRNA downregulation of TP53 and RB1 in penile cancer. Mol. Carcinog. 59, 604–617 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Chahoud, J. et al. Whole-exome sequencing in penile squamous cell carcinoma uncovers novel prognostic categorization and drug targets similar to head and neck squamous cell carcinoma. Clin. Cancer Res. 27, 2560–2570 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Jacob, J. et al. Comprehensive genomic profiling of histologic subtypes of urethral carcinomas. Urol. Oncol. 39, 731.e1–731.e15 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hovelson, D. H. et al. Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia 17, 385–399 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sambandam, V. et al. PDK1 mediates NOTCH1-mutated head and neck squamous carcinoma vulnerability to therapeutic PI3K/mTOR inhibition. Clin. Cancer Res. 25, 3329–3340 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashemi Gheinani, A., Bigger-Allen, A., Wacker, A. & Adam, R. M. Systems analysis of benign bladder disorders: insights from omics analysis. Am. J. Physiol. Ren. Physiol. 318, F901–F910 (2020).


    Google Scholar
     

  • Gheinani, A. H. et al. Integrated mRNA-miRNA transcriptome analysis of bladder biopsies from patients with bladder pain syndrome identifies signaling alterations contributing to the disease pathogenesis. BMC Urol. 21, 172 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, X. F. et al. Integrated analysis of microarray studies to identify novel diagnostic markers in bladder pain syndrome/interstitial cystitis with Hunner lesion. Int. J. Gen. Med. 15, 3143–3154 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joseph, D. B. et al. Single-cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. J. Pathol. 255, 141–154 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Middleton, L. W. et al. Genomic analysis of benign prostatic hyperplasia implicates cellular re-landscaping in disease pathogenesis. JCI Insight 5, e129749 (2019).

    PubMed 

    Google Scholar
     

  • Liu, D. et al. Integrative multiplatform molecular profiling of benign prostatic hyperplasia identifies distinct subtypes. Nat. Commun. 11, 1987 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B., Veneziano, D. & Somani, B. K. Artificial intelligence in the diagnosis, treatment and prevention of urinary stones. Curr. Opin. Urol. 30, 782–787 (2020).

    PubMed 

    Google Scholar
     

  • Michaels, E. K. et al. Use of a neural network to predict stone growth after shock wave lithotripsy. Urology 51, 335–338 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Black, K. M., Law, H., Aldoukhi, A., Deng, J. & Ghani, K. R. Deep learning computer vision algorithm for detecting kidney stone composition. BJU Int. 125, 920–924 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Aminsharifi, A. et al. Artificial neural network system to predict the postoperative outcome of percutaneous nephrolithotomy. J. Endourol. 31, 461–467 (2017).

    PubMed 

    Google Scholar
     

  • Ganesan, V. & Pearle, M. S. Artificial intelligence in stone disease. Curr. Opin. Urol. 31, 391–396 (2021).

    PubMed 

    Google Scholar
     

  • Muller, S. et al. Can a dinosaur think? Implementation of artificial intelligence in extracorporeal shock wave lithotripsy. Eur. Urol. Open. Sci. 27, 33–42 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aminsharifi, A. et al. Predicting the postoperative outcome of percutaneous nephrolithotomy with machine learning system: software validation and comparative analysis with Guy’s stone score and the CROES nomogram. J. Endourol. 34, 692–699 (2020).

    PubMed 

    Google Scholar
     

  • Venhola, M., Reunanen, M., Taskinen, S., Lahdes-Vasama, T. & Uhari, M. Interobserver and intra-observer agreement in interpreting urodynamic measurements in children. J. Urol. 169, 2344–2346 (2003).

    PubMed 

    Google Scholar
     

  • Dudley, A. G. et al. Interrater reliability in pediatric urodynamic tracings: a pilot study. J. Urol. 197, 865–870 (2017).

    PubMed 

    Google Scholar
     

  • Wang, H. S. et al. Pattern recognition algorithm to identify detrusor overactivity on urodynamics. Neurourol. Urodyn. 40, 428–434 (2021).

    PubMed 

    Google Scholar
     

  • Hobbs, K. T. et al. Machine learning for urodynamic detection of detrusor overactivity. Urology 159, 247–254 (2022).

    PubMed 

    Google Scholar
     

  • Doern, C. D. & Richardson, S. E. Diagnosis of urinary tract infections in children. J. Clin. Microbiol. 54, 2233–2242 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medina, M. & Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 11, 1756287219832172 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nitzan, O., Elias, M., Chazan, B. & Saliba, W. Urinary tract infections in patients with type 2 diabetes mellitus: review of prevalence, diagnosis, and management. Diabetes Metab. Syndr. Obes. 8, 129–136 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pannek, J. & Wollner, J. Management of urinary tract infections in patients with neurogenic bladder: challenges and solutions. Res. Rep. Urol. 9, 121–127 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ripa, F. et al. Association of kidney stones and recurrent UTIs: the chicken and egg situation. A systematic review of literature. Curr. Urol. Rep. 23, 165–174 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, R. A., Moore, C. L., Cheung, K. H. & Brandt, C. Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE 13, e0194085 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozkan, I. A., Koklu, M. & Sert, I. U. Diagnosis of urinary tract infection based on artificial intelligence methods. Comput. Meth Prog. Bio 166, 51–59 (2018).


    Google Scholar
     

  • Price, T. K. et al. The clinical urine culture: enhanced techniques improve detection of clinically relevant microorganisms. J. Clin. Microbiol. 54, 1216–1222 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szlachta-McGinn, A. et al. Molecular diagnostic methods versus conventional urine culture for diagnosis and treatment of urinary tract infection: a systematic review and meta-analysis. Eur. Urol. Open. Sci. 44, 113–124 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roux-Dalvai, F. et al. Fast and accurate bacterial species identification in urine specimens using LC-MS/MS mass spectrometry and machine learning. Mol. Cell Proteom. 18, 2492–2505 (2019).

    CAS 

    Google Scholar
     

  • Advanced Analytics Group of Pediatric Urology and ORC Personalized Medicine Group Targeted workup after initial febrile urinary tract infection: using a novel machine learning model to identify children most likely to benefit from voiding cystourethrogram. J. Urol. 202, 144–152 (2019).


    Google Scholar
     

  • Bagli, D. J. et al. Artificial neural networks in pediatric urology: prediction of sonographic outcome following pyeloplasty. J. Urol. 160, 980–983 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Seckiner, I., Seckiner, S. U., Bayrak, O. & Erturhan, S. Use of artificial neural networks in the management of antenatally diagnosed ureteropelvic junction obstruction. Can. Urol. Assoc. J. 5, E152–E155 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drysdale, E. et al. Personalized application of machine learning algorithms to identify pediatric patients at risk for recurrent ureteropelvic junction obstruction after dismembered pyeloplasty. World J. Urol. 40, 593–599 (2022).

    PubMed 

    Google Scholar
     

  • Rademakers, K. et al. Male bladder outlet obstruction: time to re-evaluate the definition and reconsider our diagnostic pathway? ICI-RS 2015. Neurourol. Urodyn. 36, 894–901 (2017).

    PubMed 

    Google Scholar
     

  • Sonke, G. S., Heskes, T., Verbeek, A. L., de la Rosette, J. J. & Kiemeney, L. A. Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks. J. Urol. 163, 300–305 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Abdovic, S. et al. Predicting posterior urethral obstruction in boys with lower urinary tract symptoms using deep artificial neural network. World J. Urol. 37, 1973–1979 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Yin, S. et al. Multi-instance deep learning of ultrasound imaging data for pattern classification of congenital abnormalities of the kidney and urinary tract in children. Urology 142, 183–189 (2020).

    PubMed 

    Google Scholar
     

  • Kwong, J. C. et al. Posterior urethral valves outcomes prediction (PUVOP): a machine learning tool to predict clinically relevant outcomes in boys with posterior urethral valves. Pediatr. Nephrol. 37, 1067–1084 (2021).

    PubMed 

    Google Scholar
     

  • Thomas, A. A. et al. Extracting data from electronic medical records: validation of a natural language processing program to assess prostate biopsy results. World J. Urol. 32, 99–103 (2014).

    PubMed 

    Google Scholar
     

  • Odisho, A. Y. et al. Automating the capture of structured pathology data for prostate cancer clinical care and research. JCO Clin. Cancer Inf. 3, 1–8 (2019).


    Google Scholar
     

  • Schroeck, F. R. et al. Development of a natural language processing engine to generate bladder cancer pathology data for health services research. Urology 110, 84–91 (2017).

    PubMed 

    Google Scholar
     

  • Glaser, A. P. et al. Automated extraction of grade, stage, and quality information from transurethral resection of bladder tumor pathology reports using natural language processing. JCO Clin. Cancer Inf. 2, 1–8 (2018).


    Google Scholar
     

  • Bashashati, A. & Goldenberg, S. L. AI for prostate cancer diagnosis – hype or today’s reality? Nat. Rev. Urol. 19, 261–262 (2022).

    PubMed 

    Google Scholar
     

  • Yang, C. et al. Trends in the conduct and reporting of clinical prediction model development and validation: a systematic review. J. Am. Med. Inf. Assoc. 29, 983–989 (2022).


    Google Scholar
     

  • Reinke, A., Tizabi, M. D., Eisenmann, M. & Maier-Hein, L. Common pitfalls and recommendations for grand challenges in medical artificial intelligence. Eur. Urol. Focus. 7, 710–712 (2021).

    PubMed 

    Google Scholar
     

  • Bulten, W. et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat. Med. 28, 154–163 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maier-Hein, L. et al. Why rankings of biomedical image analysis competitions should be interpreted with care. Nat. Commun. 9, 5217 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Q., Chen, Z. H., Cao, Y. H. & Peng, S. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit. Med. 4, 154 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhiman, P. et al. Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review. BMC Med. Res. Methodol. 22, 101 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, G. S. et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 11, e048008 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calogero, A. E., Burgio, G., Condorelli, R. A., Cannarella, R. & La Vignera, S. Epidemiology and risk factors of lower urinary tract symptoms/benign prostatic hyperplasia and erectile dysfunction. Aging Male 22, 12–19 (2019).

    PubMed 

    Google Scholar
     

  • Grossman, R. L. et al. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 375, 1109–1112 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regev, A. et al. The Human Cell Atlas. Elife 6, e27041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papatheodorou, I. et al. Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res. 46, D246–D251 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed 

    Google Scholar
     

  • Hu, X. et al. TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res. 46, D1144–D1149 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Omar, M. I. et al. Introducing PIONEER: a project to harness big data in prostate cancer research. Nat. Rev. Urol. 17, 351–362 (2020).

    PubMed 

    Google Scholar
     

  • Dunning, M. J. et al. Mining human prostate cancer datasets: the “camcAPP” shiny app. EBioMedicine 17, 5–6 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, Z. et al. Genomic characterization of genes encoding histone acetylation modulator proteins identifies therapeutic targets for cancer treatment. Nat. Commun. 10, 733 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghoshdastider, U. et al. Pan-cancer analysis of ligand–receptor cross-talk in the tumor microenvironment. Cancer Res. 81, 1802–1812 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Rohatgi, N., Ghoshdastider, U., Baruah, P., Kulshrestha, T. & Skanderup, A. J. A pan-cancer metabolic atlas of the tumor microenvironment. Cell Rep. 39, 110800 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McMahon, A. P. et al. GUDMAP: the genitourinary developmental molecular anatomy project. J. Am. Soc. Nephrol. 19, 667–671 (2008).

    PubMed 

    Google Scholar
     

  • Rigden, D. J. & Fernandez, X. M. The 2018 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res. 46, D1–D7 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • van der Wijst, M. et al. Science Forum: the single-cell eQTLGen consortium. Elife 9, e52155 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abugessaisa, I. et al. SCPortalen: human and mouse single-cell centric database. Nucleic Acids Res. 46, D781–D787 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Ner-Gaon, H., Melchior, A., Golan, N., Ben-Haim, Y. & Shay, T. JingleBells: a repository of immune-related single-cell RNA-sequencing datasets. J. Immunol. 198, 3375–3379 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y., Zhu, J., Jia, P. & Zhao, Z. scRNASeqDB: a database for RNA-seq based gene expression profiles in human single cells. Genes 8, 368 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Z. J., Wei, L., Lu, S., Yang, D. C. & Gao, G. Searching large-scale scRNA-seq databases via unbiased cell embedding with Cell BLAST. Nat. Commun. 11, 3458 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020, baaa073 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. et al. DISCO: a database of Deeply Integrated human Single-Cell Omics data. Nucleic Acids Res. 50, D596–D602 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41585-023-00805-3

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]