Health
AI-based MRI tools show promise in multiple sclerosis diagnosis
A recent Npj Digital Medicine study assesses the accuracy and effectiveness of artificial intelligence (AI)-based imaging techniques to diagnose multiple sclerosis (MS).
Study: A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis. Image Credit: New Africa / Shutterstock.com
Background
MS is a common neurodegenerative and inflammatory demyelinating condition of the central nervous system (CNS). MS is characterized by focal lesions and diffused neurodegeneration in the spinal cord and brain. Individuals with MS suffer significant cognitive and physical disability, which sometimes causes premature withdrawal from the workforce.
Globally, about 2.8 million people are living with MS. Disease-modifying therapy (DMT) has proved to be highly effective and reduces the risk of disease recurrence.
Inflammatory activity is a major pathological substrate that reduces relapse-associated worsening (RAW). The response of MS patients to DMT is annually assessed through magnetic resonance imaging (MRI).
MRI plays a vital role in assessing neurological diseases that affect a large number of axons and disrupt complex integrated brain networks. Likewise, MRI and other imaging modalities facilitate the diagnosis of MS and the monitoring of this disease and its response to DMT.
The lack of prior or current 3D FLAIR volume in picture archiving and communications systems (PACS) poses a limitation for the accurate detection of small lesions. The volume of new or enlarging lesions influences treatment strategies that are not typically detected in routine clinical radiology practice. In traditional methods, radiologists’ experience is extremely important for analyzing the overall FLAIR lesion burden that reflects MS severity.
The comparison between severe brain volume loss (BVL) and age-matched healthy controls provides significant prognostic information. The accuracy of this information is dependent on the visual inspection of radiologists.
Changes in brain volume during 12-month intervals between MRI scans are small and might not be determined through visual inspection. The inability to identify short-term changes in brain volume is a significant cause of adverse trajectories linked to MS outcomes and influences clinical decisions to change or escalate DMT.
The development of AI algorithms for medical imaging has enabled automation in clinical detection. AI has also been used for the segmentation of brain structures and analysis of different brain pathologies, including MS lesions.
About the study
The current study assessed the effectiveness of iQ-SolutionsTM, hereafter referred to as iQ-MS, based on a large cohort of MS scans. The assessments of MS scans were independently conducted by expert radiologists in clinical settings.
The researchers hypothesized that AI-based tools can more sensitively and accurately evaluate MRI scan reports of disease activity than conventional methods based on radiology reports.
Brain scans were analyzed by iQ-Solutions™ in Digital Imaging and Communications in Medicine (DICOM) format by a collection of AI algorithms based on deep neural network technology. The AI-based algorithms were designed based on 8,500 brain scans that were expertly annotated by skilled neuroimaging analysts.
A reference cohort was created based on MRI scans of over 3,000 healthy controls and an independent sample of 839 people with MS. Both samples were processed with the same methods.
Study findings
The iQ-SolutionsTM system generates data for cross-sectional and longitudinal whole brain, lesion metrics, and brain substructure relevant to MS. This AI tool enables visualization of many picture archiving and communications systems (PACS) for radiologists to review. Scan images are automatically subjected to quality check for optimal pre-contrast 3D-T1 and 3D FLAIR sequences, containing over 30 slices with a thickness of three millimeters (mm) or more.
Cross-sectional segmentation algorithms were designed based on 3D-UNet, which enabled the extraction of image features, followed by the prediction head. Cross-validation was conducted by comparing case- and voxel-wise DICE scores with ground-truth reports produced by skilled neuroimaging analysts.
The lesion activity of different time points was measured by iQ-Solutions, indicating the development of new and enlarging lesions. Moreover, iQ-MS revealed enlarging lesions as new lesioned voxels that are connected to existing lesions reported in a previous study within its 26-voxel neighborhood.
LG-Net is a lesion-inpainting model for brain and substructure volumetric analyses. This system was applied to 3DT1 images to improve the segmentation bias produced due to the presence of MS lesions.
Notably, iQ-Solutions performs many checks between the two scan timepoints. In the event of an error, longitudinal metrics are reported but are returned to the user with a protocol irregularity warning.
The iQ-MS tool is equipped with the DeepBVC algorithm, which assesses longitudinal whole-brain volume change. An AI-based segmentation model integrated with a Jacobian method enabled the estimation of whole gray matter and thalamus volume change.
Moreover, iQ-MS offers volumetric data for individual patients as normalized values. This tool provides data on brain volumetrics and MS lesion volumes benchmarked to a hypothetical MS patient of similar age, disability, and disease duration. This enabled a more clinically meaningful and experiential reference.
Conclusions
The results support using iQ-MS to monitor people with MS. Compared to a core MRI analysis lab report and radiology reports, the current AI tool offers a better clinical assessment.
The study findings highlight that using iQ-MS could improve clinical imaging, disease-specific research, and the management of individual MS patients in real-time.
Journal reference:
- Barnett, M., Wang, D., Beadnall, H., et al. (2023) A real-world clinical validation for AI-based MRI monitoring in multiple sclerosis. Npj Digital Medicine 6(1);1-9. doi:10.1038/s41746-023-00940-6
Sources 2/ https://www.news-medical.net/news/20231023/AI-based-MRI-tools-show-promise-in-multiple-sclerosis-diagnosis.aspx The mention sources can contact us to remove/changing this article |
What Are The Main Benefits Of Comparing Car Insurance Quotes Online
LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos
to request, modification Contact us at Here or [email protected]