Connect with us

Health

From movement to motivation: a proposed framework to understand the antidepressant effect of exercise

From movement to motivation: a proposed framework to understand the antidepressant effect of exercise

 


  • Friedrich MJ. Depression is the leading cause of disability around the world. JAMA. 2017;317:1517.

    PubMed 

    Google Scholar
     

  • American Psychiatric Association. Multiaxial assessment.DSM-IV-TR: diagnostic and statistical manual of mental disorders. Washington, DC: American Psychiatric Association; 2002.


    Google Scholar
     

  • Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163:28–40.

    PubMed 

    Google Scholar
     

  • Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med. 2006;354:1231–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Fried EI, Nesse RM. Depression is not a consistent syndrome: an investigation of unique symptom patterns in the STAR*D study. J Affect Disord. 2015;172:96–102.

    PubMed 

    Google Scholar
     

  • Uher R, Perlis RH, Henigsberg N, Zobel A, Rietschel M, Mors O, et al. Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms. Psychol Med. 2012;42:967–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Halahakoon DC, Kieslich K, O’Driscoll C, Nair A, Lewis G, Roiser JP. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiatry. 2020;77:1286–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Treadway MT, Bossaller NA, Shelton RC, Zald DH. Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol. 2012;121:553–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X-H, Huang J, Zhu C-Y, Wang Y-F, Cheung EFC, Chan RCK, et al. Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res. 2014;220:874–82.

    PubMed 

    Google Scholar
     

  • Cléry-Melin M-L, Schmidt L, Lafargue G, Baup N, Fossati P, Pessiglione M. Why don’t you try harder? An investigation of effort production in major depression. PLOS ONE. 2011;6:e23178.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello H, Yamamori Y, Reeves S, Schrag A, Howard R, Roiser JP. Longitudinal decline in striatal dopamine transporter binding in Parkinson’s disease: associations with apathy and anhedonia. J Neurol Neurosurg Psychiatry. 2023;94:863–70.

  • Peciña M, Sikora M, Avery ET, Heffernan J, Peciña S, Mickey BJ, et al. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: implications for anhedonia, anxiety and treatment response. Eur Neuropsychopharmacol. 2017;27:977–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain J Neurol. 2016;139:1325–47.


    Google Scholar
     

  • Treadway MT, Buckholtz JW, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic mechanisms of individual differences in human effort-based decision-making. J Neurosci. 2012;32:6170–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westbrook A, van den Bosch R, Määttä JI, Hofmans L, Papadopetraki D, Cools R, et al. Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work. Science. 2020;367:1362–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maron E, Eller T, Vasar V, Nutt DJ. Effects of bupropion augmentation in escitalopram-resistant patients with major depressive disorder: an open-label, naturalistic study. J Clin Psychiatry. 2009;70:1054–6.

    PubMed 

    Google Scholar
     

  • Argyropoulos SV, Nutt DJ. Anhedonia revisited: is there a role for dopamine-targeting drugs for depression? J Psychopharmacol. 2013;27:869–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Sacheli MA, Murray DK, Vafai N, Cherkasova MV, Dinelle K, Shahinfard E, et al. Habitual exercisers versus sedentary subjects with Parkinson’s disease: multimodal PET and fMRI study. Mov Disord Off J Mov Disord Soc. 2018;33:1945–50.


    Google Scholar
     

  • Sacheli MA, Neva JL, Lakhani B, Murray DK, Vafai N, Shahinfard E, et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2019;34:1891–1900.

    CAS 

    Google Scholar
     

  • Schuch FB, Vancampfort D, Firth J, Rosenbaum S, Ward PB, Silva ES, et al. Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am J Psychiatry. 2018;175:631–48.

    PubMed 

    Google Scholar
     

  • Morres ID, Hatzigeorgiadis A, Stathi A, Comoutos N, Arpin-Cribbie C, Krommidas C, et al. Aerobic exercise for adult patients with major depressive disorder in mental health services: a systematic review and meta-analysis. Depress Anxiety. 2019;36:39–53.

    PubMed 

    Google Scholar
     

  • Bailey AP, Hetrick SE, Rosenbaum S, Purcell R, Parker AG. Treating depression with physical activity in adolescents and young adults: a systematic review and meta-analysis of randomised controlled trials. Psychol Med. 2018;48:1068–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Krogh J, Nordentoft M, Sterne JAC, Lawlor DA. The effect of exercise in clinically depressed adults: systematic review and meta-analysis of randomized controlled trials. J Clin Psychiatry. 2011;72:529–38.

    PubMed 

    Google Scholar
     

  • Shilyansky C, Williams LM, Gyurak A, Harris A, Usherwood T, Etkin A. Effect of antidepressant treatment on cognitive impairments associated with depression: a randomised longitudinal study. Lancet Psychiatry. 2016;3:425–35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14:125–30.

    PubMed 

    Google Scholar
     

  • Oertel-Knöchel V, Mehler P, Thiel C, Steinbrecher K, Malchow B, Tesky V, et al. Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. Eur Arch Psychiatry Clin Neurosci. 2014;264:589–604.

    PubMed 

    Google Scholar
     

  • Rock P, Roiser J, Riedel W, Blackwell A, Rock PL, Roiser JP, et al. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2013;44:1–12.


    Google Scholar
     

  • Kandola A, Ashdown-Franks G, Hendrikse J, Sabiston CM, Stubbs B. Physical activity and depression: towards understanding the antidepressant mechanisms of physical activity. Neurosci Biobehav Rev. 2019;107:525–39.

    PubMed 

    Google Scholar
     

  • Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64.

    PubMed 

    Google Scholar
     

  • Gujral S, Aizenstein H, Reynolds CF, Butters MA, Grove G, Karp JF, et al. Exercise for depression: a feasibility trial exploring neural mechanisms. Am J Geriatr Psychiatry. 2019;27:611–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schuch FB, Vasconcelos-Moreno MP, Borowsky C, Zimmermann AB, Wollenhaupt-Aguiar B, Ferrari P, et al. The effects of exercise on oxidative stress (TBARS) and BDNF in severely depressed inpatients. Eur Arch Psychiatry Clin Neurosci. 2014;264:605–13.

    PubMed 

    Google Scholar
     

  • Alghadir AH, Gabr SA. Hormonal function responses to moderate aerobic exercise in older adults with depression. Clin Interv Aging. 2020;15:1271–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beserra AHN, Kameda P, Deslandes AC, Schuch FB, Laks J, Moraes HSde. Can physical exercise modulate cortisol level in subjects with depression? A systematic review and meta-analysis. Trends Psychiatry Psychother. 2018;40:360–8.

    PubMed 

    Google Scholar
     

  • Schuch FB, Deslandes AC, Stubbs B, Gosmann NP, Silva CTBda, Fleck MPdeA. Neurobiological effects of exercise on major depressive disorder: a systematic review. Neurosci Biobehav Rev. 2016;61:1–11.

    PubMed 

    Google Scholar
     

  • Heinze K, Cumming J, Dosanjh A, Palin S, Poulton S, Bagshaw AP, et al. Neurobiological evidence of longer-term physical activity interventions on mental health outcomes and cognition in young people: a systematic review of randomised controlled trials. Neurosci Biobehav Rev. 2021;120:431–41.

    PubMed 

    Google Scholar
     

  • Robert P, Onyike CU, Leentjens AFG, Dujardin K, Aalten P, Starkstein S, et al. Proposed diagnostic criteria for apathy in Alzheimer’s disease and other neuropsychiatric disorders. Eur Psychiatry. 2009;24:98–104.

    CAS 
    PubMed 

    Google Scholar
     

  • Treadway MT, Zald DH. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev. 2011;35:537–55.

    PubMed 

    Google Scholar
     

  • Zald DH, Treadway MT. Reward processing, neuroeconomics, and psychopathology. Annu Rev Clin Psychol. 2017;13:471–95.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rømer Thomsen K, Whybrow PC, Kringelbach ML. Reconceptualizing anhedonia: novel perspectives on balancing the pleasure networks in the human brain. Front Behav Neurosci. 2015;9:49.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012;35:68–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014;10:393–423.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello H, Husain M, Roiser J. Apathy and motivation: biological basis and drug treatment. 2023. https://doi.org/10.31234/osf.io/m3vjy.

  • Vrieze E, Pizzagalli DA, Demyttenaere K, Hompes T, Sienaert P, de Boer P, et al. Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry. 2013;73:639–45.

    PubMed 

    Google Scholar
     

  • Pizzagalli DA, Iosifescu D, Hallett LA, Ratner KG, Fava M. Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res. 2008;43:76–87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huys QJ, Pizzagalli DA, Bogdan R, Dayan P. Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord. 2013;3:12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pechtel P, Dutra SJ, Goetz EL, Pizzagalli DA. Blunted reward responsiveness in remitted depression. J Psychiatr Res. 2013;47:1864–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kieslich K, Valton V, Roiser JP. Pleasure, reward value, prediction error and anhedonia. In: Pizzagalli DA, (ed). Anhedonia: preclinical, translational, and clinical integration. Cham: Springer International Publishing; 2022. p. 281–304.


    Google Scholar
     

  • Husain M, Roiser JP. Neuroscience of apathy and anhedonia: a transdiagnostic approach. Nat Rev Neurosci. 2018;19:470–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry. 2009;166:702–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knutson B, Bhanji JP, Cooney RE, Atlas LY, Gotlib IH. Neural responses to monetary incentives in major depression. Biol Psychiatry. 2008;63:686–92.

    PubMed 

    Google Scholar
     

  • Gorka SM, Huggins AA, Fitzgerald DA, Nelson BD, Phan KL, Shankman SA. Neural response to reward anticipation in those with depression with and without panic disorder. J Affect Disord. 2014;164:50–56.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stringaris A, Vidal-Ribas Belil P, Artiges E, Lemaitre H, Gollier-Briant F, Wolke S, et al. The brain’s response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample. Am J Psychiatry. 2015;172:1215–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadid G, Friedman A. Dynamics of the dopaminergic system as a key component to the understanding of depression. Prog Brain Res. 2008;172:265–86.

  • Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64:327–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35:4–26.

    PubMed 

    Google Scholar
     

  • Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron. 2012;76:470–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci. 2018;22:128–35.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rzepa E, Fisk J, McCabe C. Blunted neural response to anticipation, effort and consummation of reward and aversion in adolescents with depression symptomatology. J Psychopharmacol. 2017;31:303–11.

    PubMed 

    Google Scholar
     

  • Ubl B, Kuehner C, Kirsch P, Ruttorf M, Diener C, Flor H. Altered neural reward and loss processing and prediction error signalling in depression. Soc Cogn Affect Neurosci. 2015;10:1102–12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Chan RCK, Wang L, Huang J, Cheung EFC, Gong Q, et al. Deficits in sustaining reward responses in subsyndromal and syndromal major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1045–52.

    PubMed 

    Google Scholar
     

  • Chase HW, Frank MJ, Michael A, Bullmore ET, Sahakian BJ, Robbins TW. Approach and avoidance learning in patients with major depression and healthy controls: relation to anhedonia. Psychol Med. 2010;40:433–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Rothkirch M, Tonn J, Köhler S, Sterzer P. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain J Neurol. 2017;140:1147–57.


    Google Scholar
     

  • Wardenaar KJ, Giltay EJ, van Veen T, Zitman FG, Penninx BWJH. Symptom dimensions as predictors of the two-year course of depressive and anxiety disorders. J Affect Disord. 2012;136:1198–203.

    PubMed 

    Google Scholar
     

  • Spijker J, Bijl RV, de Graaf R, Nolen WA. Determinants of poor 1-year outcome of DSM-III-R major depression in the general population: results of the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Acta Psychiatr Scand. 2001;103:122–30.

    CAS 
    PubMed 

    Google Scholar
     

  • McMakin DL, Olino TM, Porta G, Dietz LJ, Emslie G, Clarke G, et al. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression. J Am Acad Child Adolesc Psychiatry. 2012;51:404–11.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nutt D, Demyttenaere K, Janka Z, Aarre T, Bourin M, Canonico PL, et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J Psychopharmacol. 2007;21:461–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Padala PR, Padala KP, Monga V, Ramirez DA, Sullivan DH. Reversal of SSRI-associated apathy syndrome by discontinuation of therapy. Ann Pharmacother. 2012;46:e8.

    PubMed 

    Google Scholar
     

  • Fava M, Ball S, Nelson JC, Sparks J, Konechnik T, Classi P, et al. Clinical relevance of fatigue as a residual symptom in major depressive disorder. Depress Anxiety. 2014;31:250–7.

    PubMed 

    Google Scholar
     

  • Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH. Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PloS One. 2009;4:e6598.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology. 2007;191:461–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Bonnelle V, Veromann K-R, Burnett Heyes S, Lo Sterzo E, Manohar S, Husain M. Characterization of reward and effort mechanisms in apathy. J Physiol Paris. 2015;109:16–26.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong T-T-J, Bonnelle V, Husain M. Quantifying motivation with effort- based decision-making paradigms in health and disease. Prog Brain Res. 2016;229:71–100.

  • Chong TT-J, Bonnelle V, Manohar S, Veromann K-R, Muhammed K, Tofaris GK, et al. Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex J Devoted Study Nerv Syst Behav. 2015;69:40–46.


    Google Scholar
     

  • Bonnelle V, Manohar S, Behrens T, Husain M. Individual differences in premotor brain systems underlie behavioral apathy. Cereb Cortex. 2015;26:bhv247.


    Google Scholar
     

  • Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, et al. Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40:99–124.

    CAS 
    PubMed 

    Google Scholar
     

  • Botvinick MM, Cohen JD. The computational and neural basis of cognitive control: charted territory and new frontiers. Cogn Sci. 2014;38:1249–85.

    PubMed 

    Google Scholar
     

  • Grahek I, Shenhav A, Musslick S, Krebs RM, Koster EHW. Motivation and cognitive control in depression. Neurosci Biobehav Rev. 2019;102:371–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchetti I, Shumake J, Grahek I, Koster EHW. Temperamental factors in remitted depression: the role of effortful control and attentional mechanisms. J Affect Disord. 2018;235:499–505.

    PubMed 

    Google Scholar
     

  • Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44:2029–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Disner SG, Beevers CG, Haigh EAP, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12:467–77.

    CAS 
    PubMed 

    Google Scholar
     

  • Gotlib IH, Joormann J. Cognition and depression: current status and future directions. Annu Rev Clin Psychol. 2010;6:285–312.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snyder HR. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull. 2013;139:81–132.

    PubMed 

    Google Scholar
     

  • Rayner G, Jackson G, Wilson S. Cognition-related brain networks underpin the symptoms of unipolar depression: Evidence from a systematic review. Neurosci Biobehav Rev. 2016;61:53–65.

    PubMed 

    Google Scholar
     

  • Laplane D, Levasseur M, Pillon B, Dubois B, Baulac M, Mazoyer B, et al. Obsessive-compulsive and other behavioural changes with bilateral basal ganglia lesions. A neuropsychological, magnetic resonance imaging and positron tomography study. Brain J Neurol. 1989;112:699–725.


    Google Scholar
     

  • Adam R, Leff A, Sinha N, Turner C, Bays P, Draganski B, et al. Dopamine reverses reward insensitivity in apathy following globus pallidus lesions. Cortex J Devoted Study Nerv Syst Behav. 2013;49:1292–303.


    Google Scholar
     

  • Manohar SG, Husain M. Human ventromedial prefrontal lesions alter incentivisation by reward. Cortex. 2016;76:104–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang SY, Kim JS. Anterior cerebral artery infarction: stroke mechanism and clinical-imaging study in 100 patients. Neurology. 2008;70:2386–93.

    PubMed 

    Google Scholar
     

  • Le Heron C, Apps MaJ, Husain M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia. 2018;118:54–67.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pessiglione M, Vinckier F, Bouret S, Daunizeau J, Le Bouc R. Why not try harder? Computational approach to motivation deficits in neuro-psychiatric diseases. Brain J Neurol. 2018;141:629–50.


    Google Scholar
     

  • Hauser TU, Eldar E, Dolan RJ. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proc Natl Acad Sci USA. 2017;114:E7395–E7404.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skvortsova V, Palminteri S, Pessiglione M. Learning to minimize efforts versus maximizing rewards: computational principles and neural correlates. J Neurosci. 2014;34:15621–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kroemer NB, Guevara A, Ciocanea Teodorescu I, Wuttig F, Kobiella A, Smolka MN. Balancing reward and work: anticipatory brain activation in NAcc and VTA predict effort differentially. NeuroImage. 2014;102:510–9.

    PubMed 

    Google Scholar
     

  • Suzuki S, Lawlor VM, Cooper JA, Arulpragasam AR, Treadway MT. Distinct regions of the striatum underlying effort, movement initiation and effort discounting. Nat Hum Behav. 2021;5:378–88.

    PubMed 

    Google Scholar
     

  • Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron. 2013;80:1359–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Croxson PL, Walton ME, O’Reilly JX, Behrens TEJ, Rushworth MFS. Effort-based cost–benefit valuation and the human brain. J Neurosci. 2009;29:4531–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurniawan IT, Guitart-Masip M, Dayan P, Dolan RJ. Effort and valuation in the brain: the effects of anticipation and execution. J Neurosci. 2013;33:6160–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong TT-J, Apps M, Giehl K, Sillence A, Grima LL, Husain M. Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biol. 2017;15:e1002598.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein-Flügge MC, Kennerley SW, Friston K, Bestmann S. Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort-reward trade-off. J Neurosci. 2016;36:10002–15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79:217–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36:183–206.

    PubMed 

    Google Scholar
     

  • Davidson RJ, Pizzagalli D, Nitschke JB, Putnam K. Depression: perspectives from affective neuroscience. Annu Rev Psychol. 2002;53:545–74.

    PubMed 

    Google Scholar
     

  • Gotlib IH, Hamilton JP. Neuroimaging and depression: current status and unresolved issues. Curr Dir Psychol Sci. 2008;17:159–63.


    Google Scholar
     

  • Eickhoff SB, Etkin A, Huemer J, Carreon DM, Jiang Y, McTeague LM. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am J Psychiatry. 2017;174:676–85.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nord CL, Halahakoon DC, Limbachya T, Charpentier C, Lally N, Walsh V, et al. Neural predictors of treatment response to brain stimulation and psychological therapy in depression: a double-blind randomized controlled trial. Neuropsychopharmacology. 2019;44:1613–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armbruster-Genç DJN, Valton V, Neil L, Vuong V, Freeman ZCL, Packer KC, et al. Altered reward and effort processing in children with maltreatment experience: a potential indicator of mental health vulnerability. Neuropsychopharmacology. 2022;47:1063–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sadaghiani S, D’Esposito M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cereb Cortex. 2015;25:2763–73.

    PubMed 

    Google Scholar
     

  • Han SW, Eaton HP, Marois R. Functional fractionation of the cingulo-opercular network: alerting insula and updating cingulate. Cereb Cortex. 2019;29:2624–38.

    PubMed 

    Google Scholar
     

  • Seeley WW. The salience network: a neural system for perceiving and responding to homeostatic demands. J Neurosci. 2019;39:9878–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19:117–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Sarchiapone M, Carli V, Camardese G, Cuomo C, Di Giuda D, Calcagni M-L, et al. Dopamine transporter binding in depressed patients with anhedonia. Psychiatry Res. 2006;147:243–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci. 2011;31:16597–602.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robles CF, Johnson AW. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor. Behav Brain Res. 2017;320:431–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Cools R, D’Esposito M. Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 2011;69:e113–e25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Floresco SB, Tse MTL, Ghods-Sharifi S. Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology. 2008;33:1966–79.

    CAS 
    PubMed 

    Google Scholar
     

  • Randall PA, Pardo M, Nunes EJ, Cruz LL, Vemuri VK, Makriyannis A, et al. Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLOS ONE. 2012;7:e47934.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology. 2007;191:507–20.

    CAS 
    PubMed 

    Google Scholar
     

  • Bell JA, Kivimäki M, Bullmore ET, Steptoe A, MRC ImmunoPsychiatry Consortium, Carvalho LA. Repeated exposure to systemic inflammation and risk of new depressive symptoms among older adults. Transl Psychiatry. 2017;7:e1208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107:234–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho LA, Bergink V, Sumaski L, Wijkhuijs J, Hoogendijk WJ, Birkenhager TK, et al. Inflammatory activation is associated with a reduced glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic major depressive disorder. Transl Psychiatry. 2014;4:e344.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kappelmann N, Lewis G, Dantzer R, Jones PB, Khandaker GM. Antidepressant activity of anti-cytokine treatment: a systematic review and meta-analysis of clinical trials of chronic inflammatory conditions. Mol Psychiatry. 2018;23:335–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet Lond Engl. 2006;367:29–35.

    CAS 

    Google Scholar
     

  • Nicoletti R, Adolfo Porro C, Brighetti G, Monti D, Pagnoni G, Guido M, et al. Long-term effects of vaccination on attentional performance. Vaccine. 2004;22:3877–81.

    PubMed 

    Google Scholar
     

  • Allison DJ, Ditor DS. The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J Neuroinflammation. 2014;11:151.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giollabhui NM, Swistun D, Murray S, Moriarity DP, Kautz MM, et al. Executive dysfunction in depression in adolescence: the role of inflammation and higher body mass. Psychol Med. 2020;50:683–91.


    Google Scholar
     

  • Husain MI, Chaudhry IB, Husain MO, Hodsoll J, Ansari MA, Naqvi HA, et al. Minocycline and celecoxib as adjunctive treatments for bipolar depression: a multicentre, factorial design randomised controlled trial. Lancet Psychiatry. 2020;7:515–27.

    PubMed 

    Google Scholar
     

  • Bai S, Guo W, Feng Y, Deng H, Li G, Nie H, et al. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: a systematic review and meta-analysis of randomised controlled trials. J Neurol Neurosurg Psychiatry. 2020;91:21–32.

    PubMed 

    Google Scholar
     

  • Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med. 2019;49:1958–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller AH, Pariante CM. Trial failures of anti-inflammatory drugs in depression. Lancet Psychiatry. 2020;7:837.

    PubMed 

    Google Scholar
     

  • Bekhbat M, Li Z, Mehta ND, Treadway MT, Lucido MJ, Woolwine BJ, et al. Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study. Mol Psychiatry. 2022;27:4113–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felger JC, Hernandez CR, Miller AH. Levodopa reverses cytokine-induced reductions in striatal dopamine release. Int J Neuropsychopharmacol. 2015;18:pyu084.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, et al. Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry. 2012;69:1044–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2017;42:216–41.

    CAS 

    Google Scholar
     

  • Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR. Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry. 2010;68:748–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vichaya EG, Hunt SC, Dantzer R. Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice. Neuropsychopharmacology. 2014;39:2884–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nunes EJ, Randall PA, Estrada A, Epling B, Hart EE, Lee CA, et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology. 2014;231:727–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Yohn SE, Arif Y, Haley A, Tripodi G, Baqi Y, Müller CE, et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology. 2016;233:3575–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Lasselin J, Treadway MT, Lacourt TE, Soop A, Olsson MJ, Karshikoff B, et al. Lipopolysaccharide alters motivated behavior in a monetary reward task: a randomized trial. Neuropsychopharmacology. 2017;42:801–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Draper A, Koch RM, van der Meer JW, AJ Apps M, Pickkers P, Husain M, et al. Effort but not reward sensitivity is altered by acute sickness induced by endotoxemia in humans. Neuropsychopharmacology. 2018;43:1107–18.

    PubMed 

    Google Scholar
     

  • Voss MW, Vivar C, Kramer AF, van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci. 2013;17:525–44.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belvederi Murri M, Pariante C, Mondelli V, Masotti M, Atti AR, Mellacqua Z, et al. HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology. 2014;41:46–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Knapen J, Van de Vliet P, Van Coppenolle H, David A, Peuskens J, Pieters G, et al. Comparison of changes in physical self-concept, global self-esteem, depression and anxiety following two different psychomotor therapy programs in nonpsychotic psychiatric inpatients. Psychother Psychosom. 2005;74:353–61.

    PubMed 

    Google Scholar
     

  • Haller N, Lorenz S, Pfirrmann D, Koch C, Lieb K, Dettweiler U, et al. Individualized web-based exercise for the treatment of depression: randomized controlled trial. JMIR Ment Health. 2018;5:e10698.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickett K, Yardley L, Kendrick T. Physical activity and depression: a multiple mediation analysis. Ment Health Phys Act. 2012;5:125–34.


    Google Scholar
     

  • Wipfli B, Landers D, Nagoshi C, Ringenbach S. An examination of serotonin and psychological variables in the relationship between exercise and mental health. Scand J Med Sci Sports. 2011;21:474–81.

    CAS 
    PubMed 

    Google Scholar
     

  • White K, Kendrick T, Yardley L. Change in self-esteem, self-efficacy and the mood dimensions of depression as potential mediators of the physical activity and depression relationship: Exploring the temporal relation of change. Ment Health Phys Act. 2009;2:44–52.


    Google Scholar
     

  • Pearce M, Garcia L, Abbas A, Strain T, Schuch FB, Golubic R, et al. Association between physical activity and risk of depression: a systematic review and meta-analysis. JAMA Psychiatry. 2022;79:550–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dishman RK, McDowell CP, Herring MP. Customary physical activity and odds of depression: a systematic review and meta-analysis of 111 prospective cohort studies. Br J Sports Med. 2021;55:926–34.

    PubMed 

    Google Scholar
     

  • Singh B, Olds T, Curtis R, Dumuid D, Virgara R, Watson A, et al. Effectiveness of physical activity interventions for improving depression, anxiety and distress: an overview of systematic reviews. Br J Sports Med. 2023;57:1203–9.

    PubMed 

    Google Scholar
     

  • Heissel A, Heinen D, Brokmeier LL, Skarabis N, Kangas M, Vancampfort D, et al. Exercise as medicine for depressive symptoms? A systematic review and meta-analysis with meta-regression. Br J Sports Med. 2023;57:1049–57.

    PubMed 

    Google Scholar
     

  • Recchia F, Bernal JDK, Fong DY, Wong SHS, Chung P-K, Chan DKC, et al. Physical activity interventions to alleviate depressive symptoms in children and adolescents: a systematic review and meta-analysis. JAMA Pediatr. 2023;177:132–40.

    PubMed 

    Google Scholar
     

  • Lee J, Gierc M, Vila-Rodriguez F, Puterman E, Faulkner G. Efficacy of exercise combined with standard treatment for depression compared to standard treatment alone: A systematic review and meta-analysis of randomized controlled trials. J Affect Disord. 2021;295:1494–511.

    PubMed 

    Google Scholar
     

  • Stothart CR, Simons DJ, Boot WR, Kramer AF. Is the effect of aerobic exercise on cognition a placebo effect? PLoS ONE. 2014;9:e109557.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plessen CY, Karyotaki E, Miguel C, Ciharova M, Cuijpers P. Exploring the efficacy of psychotherapies for depression: a multiverse meta-analysis. BMJ Ment Health. 2023;26. https://doi.org/10.1136/bmjment-2022-300626.

  • Edwards MK, Loprinzi PD. Effects of a sedentary behavior-inducing randomized controlled intervention on depression and mood profile in active young adults. Mayo Clin Proc. 2016;91:984–98.

    PubMed 

    Google Scholar
     

  • Endrighi R, Steptoe A, Hamer M. The effect of ly induced sedentariness on mood and psychobiological responses to mental stress. Br J Psychiatry J Ment Sci. 2016;208:245–51.


    Google Scholar
     

  • Ross RE, VanDerwerker CJ, Saladin ME, Gregory CM. The role of exercise in the treatment of depression: biological underpinnings and clinical outcomes. Mol Psychiatry. 2023;28:298–328.

    PubMed 

    Google Scholar
     

  • Cooney GM, Dwan K, Greig CA, Lawlor DA, Rimer J, Waugh FR et al. Exercise for depression. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD004366.pub6.

  • Kvam S, Kleppe CL, Nordhus IH, Hovland A. Exercise as a treatment for depression: a meta-analysis. J Affect Disord. 2016;202:67–86.

    PubMed 

    Google Scholar
     

  • Schuch FB, Vancampfort D, Richards J, Rosenbaum S, Ward PB, Stubbs B. Exercise as a treatment for depression: a meta-analysis adjusting for publication bias. J Psychiatr Res. 2016;77:42–51.

    PubMed 

    Google Scholar
     

  • Busch AM, Ciccolo JT, Puspitasari AJ, Nosrat S, Whitworth JW, Stults-Kolehmainen M. Preferences for exercise as a treatment for depression. Ment Health Phys Act. 2016;10:68–72.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carpiniello B, Primavera D, Pilu A, Vaccargiu N, Pinna F. Physical activity and mental disorders: a case–control study on attitudes, preferences and perceived barriers in Italy. J Ment Health. 2013;22:492–500.

    PubMed 

    Google Scholar
     

  • Fraser SJ, Chapman JJ, Brown WJ, Whiteford HA, Burton NW. Physical activity attitudes and preferences among inpatient adults with mental illness. Int J Ment Health Nurs. 2015;24:413–20.

    PubMed 

    Google Scholar
     

  • Firth J, Rosenbaum S, Stubbs B, Gorczynski P, Yung AR, Vancampfort D. Motivating factors and barriers towards exercise in severe mental illness: a systematic review and meta-analysis. Psychol Med. 2016;46:2869–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padin AC, Wilson SJ, Bailey BE, Malarkey WB, Lustberg MB, Farrar WB, et al. Physical activity after breast cancer surgery: does depression make exercise feel more effortful than it actually is? Int J Behav Med. 2019;26:237–46.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu F-C, Kritchevsky SB, Liu Y, Kanaya A, Newman AB, Perry SE, et al. Association between inflammatory components and physical function in the health, aging, and body composition study: a principal component analysis approach. J Gerontol A Biol Sci Med Sci. 2009;64:581–9.

    PubMed 

    Google Scholar
     

  • Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev. 2020;41:bnaa016.

    PubMed 

    Google Scholar
     

  • Kistner TM, Pedersen BK, Lieberman DE. Interleukin 6 as an energy allocator in muscle tissue. Nat Metab. 2022;4:170–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022;18:273–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127:1–4.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Samaras K, Botelho NK, Chisholm DJ, Lord RV. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obes Silver Spring Md. 2010;18:884–9.

    CAS 

    Google Scholar
     

  • Verheggen RJHM, Maessen MFH, Green DJ, Hermus ARMM, Hopman MTE, Thijssen DHT. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17:664–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta Int J Clin Chem. 2010;411:785–93.

    CAS 

    Google Scholar
     

  • Chang E, Varghese M, Singer K. Gender and sex differences in adipose tissue. Curr Diab Rep. 2018;18:69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans J, Salamonsen LA. Inflammation, leukocytes and menstruation. Rev Endocr Metab Disord. 2012;13:277–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Sacher J, Okon-Singer H, Villringer A. Evidence from neuroimaging for the role of the menstrual cycle in the interplay of emotion and cognition. Front Hum Neurosci. 2013;7:374.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNulty KL, Elliott-Sale KJ, Dolan E, Swinton PA, Ansdell P, Goodall S, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50:1813–27.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falconer CL, Cooper AR, Walhin JP, Thompson D, Page AS, Peters TJ, et al. Sedentary time and markers of inflammation in people with newly diagnosed type 2 diabetes. Nutr Metab Cardiovasc Dis. 2014;24:956–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32:590–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimmo MA, Leggate M, Viana JL, King JA. The effect of physical activity on mediators of inflammation. Diabetes Obes Metab. 2013;15:51–60.

    CAS 
    PubMed 

    Google Scholar
     

  • Paolucci EM, Loukov D, Bowdish DME, Heisz JJ. Exercise reduces depression and inflammation but intensity matters. Biol Psychol. 2018;133:79–84.

    PubMed 

    Google Scholar
     

  • Metsios GS, Moe RH, Kitas GD. Exercise and inflammation. Best Pract Res Clin Rheumatol. 2020;34:101504.

    PubMed 

    Google Scholar
     

  • Kohut ML, McCann DA, Russell DW, Konopka DN, Cunnick JE, Franke WD, et al. Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun. 2006;20:201–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Marques A, Marconcin P, Werneck A, Ferrari G, Gouveia E, Kliegel M, et al. Bidirectional association between physical activity and dopamine across adulthood-a systematic review. Brain Sci. 2021. https://doi.org/10.3390/brainsci11070829.

  • Wu S-Y, Wang T-F, Yu L, Jen CJ, Chuang J-I, Wu F-S, et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun. 2011;25:135–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Hattori S, Naoi M, Nishino H. Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res Bull. 1994;35:41–49.

    CAS 
    PubMed 

    Google Scholar
     

  • Saanijoki T, Nummenmaa L, Tuulari JJ, Tuominen L, Arponen E, Kalliokoski KK, et al. Aerobic exercise modulates anticipatory reward processing via the μ-opioid receptor system. Hum Brain Mapp. 2018;39:3972–83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bothe N, Zschucke E, Dimeo F, Heinz A, Wüstenberg T, Ströhle A. Acute exercise influences reward processing in highly trained and untrained men. Med Sci Sports Exerc. 2013;45:583–91.

    PubMed 

    Google Scholar
     

  • Crabtree DR, Chambers ES, Hardwick RM, Blannin AK. The effects of high-intensity exercise on neural responses to images of food. Am J Clin Nutr. 2014;99:258–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Brush CJ, Hajcak G, Bocchine AJ, Ude AA, Muniz KM, Foti D, et al. A randomized trial of aerobic exercise for major depression: examining neural indicators of reward and cognitive control as predictors and treatment targets. Psychol Med. 2022;52:893–903.

    CAS 
    PubMed 

    Google Scholar
     

  • Wardle MC, Lopez-Gamundi P, LaVoy EC. Effects of an acute bout of physical exercise on reward functioning in healthy adults. Physiol Behav. 2018;194:552–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernacer J, Martinez-Valbuena I, Martinez M, Pujol N, Luis EO, Ramirez-Castillo D, et al. An amygdala-cingulate network underpins changes in effort-based decision making after a fitness program. NeuroImage. 2019;203:116181.

    PubMed 

    Google Scholar
     

  • Leventhal AM. Relations between anhedonia and physical activity. Am J Health Behav. 2012;36:860–72.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soini E, Rosenström T, Määttänen I, Jokela M. Physical activity and specific symptoms of depression: a pooled analysis of six cohort studies. J Affect Disord. 2024;348:44–53.

    PubMed 

    Google Scholar
     

  • Sun C-W, Wang Y-J, Fang Y-Q, He Y-Q, Wang X, So BCL, et al. The effect of physical activity on anhedonia in individuals with depressive symptoms. PsyCh J. 2022;11:214–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Lakes K. The response to challenge scale (RCS): the development and construct validity of an observer-rated measure of children’s self-regulation. Int J Educ Psychol Assess. 2012;10:83–96.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakes KD, Hoyt WT. Promoting self-regulation through school-based martial arts training. J Appl Dev Psychol. 2004;25:283–302.


    Google Scholar
     

  • Toups M, Carmody T, Greer T, Rethorst C, Grannemann B, Trivedi MH. Exercise is an effective treatment for positive valence symptoms in major depression. J Affect Disord. 2017;209:188–94.

    PubMed 

    Google Scholar
     

  • Chaddock-Heyman L, Erickson K, Voss M, Knecht A, Pontifex M, Castelli D, et al. The effects of physical activity on functional MRI activation associated with cognitive control in children: a randomized controlled intervention. Front Hum Neurosci. 2013;7. https://doi.org/10.3389/fnhum.2013.00072. Accessed 8 Jan 2023.

  • Wu X, Lin P, Yang J, Song H, Yang R, Yang J. Dysfunction of the cingulo-opercular network in first-episode medication-naive patients with major depressive disorder. J Affect Disord. 2016;200:275–83.

    PubMed 

    Google Scholar
     

  • Crum J, Ronca F, Herbert G, Funk S, Carmona E, Hakim U, et al. Decreased exercise-induced changes in prefrontal cortex hemodynamics are associated with depressive symptoms. Front Neuroergonomics. 2022;3. https://doi.org/10.3389/fnrgo.2022.806485. Accessed 29 Mar 2023.

  • Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA. 2004;101:3316–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krafft CE, Schwarz NF, Chi L, Weinberger AL, Schaeffer DJ, Pierce JE, et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity. 2014;22:232–42.

    PubMed 

    Google Scholar
     

  • Etnier JL, Nowell PM, Landers DM, Sibley BA. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev. 2006;52:119–30.

    PubMed 

    Google Scholar
     

  • Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2017;57:36–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordin K, Gorbach T, Pedersen R, Panes Lundmark V, Johansson J, Andersson M, et al. DyNAMiC: a prospective longitudinal study of dopamine and brain connectomes: A new window into cognitive aging. J Neurosci Res. 2022;100:1296–320.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karalija N, Johansson J, Papenberg G, Wåhlin A, Salami A, Köhncke Y, et al. Longitudinal dopamine D2 receptor changes and cerebrovascular health in aging. Neurology. 2022;99:e1278–e89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Contreras-Osorio F, Ramirez-Campillo R, Cerda-Vega E, Campos-Jara R, Martínez-Salazar C, Reigal RE, et al. Effects of physical exercise on executive function in adults with depression: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19:15270.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dotson VM, Gradone AM, Bogoian HR, Minto LR, Taiwo Z, Salling ZN. Be fit, be sharp, be well: the case for exercise as a treatment for cognitive impairment in late-life depression. J Int Neuropsychol Soc. 2021;27:776–89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buschert V, Prochazka D, Bartl H, Diemer J, Malchow B, Zwanzger P, et al. Effects of physical activity on cognitive performance: a controlled clinical study in depressive patients. Eur Arch Psychiatry Clin Neurosci. 2019;269:555–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Brüchle W, Schwarzer C, Berns C, Scho S, Schneefeld J, Koester D, et al. Physical activity reduces clinical symptoms and restores neuroplasticity in major depression. Front Psychiatry. 2021;12:660642.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drinkwater C, Wildman J, Moffatt S. Social prescribing. BMJ. 2019;364:l1285.

    PubMed 

    Google Scholar
     

  • Glowacki K, Duncan MJ, Gainforth H, Faulkner G. Barriers and facilitators to physical activity and exercise among adults with depression: a scoping review. Ment Health Phys Act. 2017;13:108–19.


    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41398-024-02922-y

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]