Connect with us

Health

Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets

Molecular and cellular mechanisms of itch sensation and the anti-itch drug targets

 


  • Roh YS, Choi J, Sutaria N, Kwatra SG. Itch: Epidemiology, clinical presentation, and diagnostic workup. J Am Acad Dermatol. 2022;86:1–14.

    Article 

    Google Scholar
     

  • Steinhoff M, Al-Khawaga S, Buddenkotte J. Itch in elderly patients: Origin, diagnostics, management. J Allergy Clin Immunol. 2023;152:42–49.

    Article 
    PubMed 

    Google Scholar
     

  • Hawro T, Hawro M, Zalewska-Janowska A, Weller K, Metz M, Maurer M. Pruritus and sleep disturbances in patients with psoriasis. Arch Dermatol Res. 2020;312:103–11.

    Article 
    PubMed 

    Google Scholar
     

  • Leader B, Carr CW, Chen SC. Pruritus epidemiology and quality of life. Handb Exp Pharmacol. 2015;226:15–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weisshaar E, Szepietowski JC, Dalgard FJ, Garcovich S, Gieler U, Giménez-Arnau AM, et al. European S2k guideline on chronic pruritus. Acta Derm Venereol. 2019;99:469–506.

    Article 
    PubMed 

    Google Scholar
     

  • Stefaniak AA, Krajewski PK, Bednarska-Chabowska D, Bolanowski M, Mazur G, Szepietowski JC. Itch in adult population with type 2 diabetes mellitus: clinical profile, pathogenesis and disease-related burden in a cross-sectional study. Biology. 2021;10:1332.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu X, Sang Y, Yang M, Chen X, Tang W. Prevalence of chronic kidney disease-associated pruritus among adult dialysis patients: A meta-analysis of cross-sectional studies. Medicine. 2018;97:e10633.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell. 2001;106:619–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell. 2009;139:1353–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lembo PM, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J, et al. Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs. Nat Neurosci. 2002;5:201–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heller D, Doyle JR, Raman VS, Beinborn M, Kumar K, Kopin AS. Novel probes establish Mas-related G protein-coupled receptor X1 variants as receptors with loss or gain of function. J Pharmacol Exp Ther. 2016;356:276–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein A, Solinski HJ, Malewicz NM, Ieong HF, Sypek EI, Shimada SG, et al. Pruriception and neuronal coding in nociceptor subtypes in human and nonhuman primates. Elife. 2021;10:e64506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Weng HJ, Patel KN, Tang Z, Bai H, Steinhoff M, et al. The distinct roles of two GPCRs, MrgprC11 and PAR2, in itch and hyperalgesia. Sci Signal. 2011;4:ra45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan Y, Liu Q, Tang Z, Raja SN, Anderson DJ, Dong X. Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci USA. 2010;107:15933–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, He SQ, Xu Q, Yang F, Tiwari V, Liu Q, et al. Activation of MrgC receptor inhibits N-type calcium channels in small-diameter primary sensory neurons in mice. Pain. 2014;155:1613–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zylka MJ, Rice FL, Anderson DJ. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron. 2005;45:17–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinohara T, Harada M, Ogi K, Maruyama M, Fujii R, Tanaka H, et al. Identification of a G protein-coupled receptor specifically responsive to beta-alanine. J Biol Chem. 2004;279:23559–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Sikand P, Ma C, Tang Z, Han L, Li Z, et al. Mechanisms of itch evoked by β-alanine. J Neurosci. 2012;32:14532–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu L, Fan N, Ma C, Wang T, Han L, Fu K, et al. Enhanced excitability of MRGPRA3- and MRGPRD-positive nociceptors in a model of inflammatory itch and pain. Brain. 2014;137:1039–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chompunud Na Ayudhya C, Roy S, Thapaliya M, Ali H. Roles of a mast cell-specific receptor MRGPRX2 in host defense and inflammation. J Dent Res. 2020;99:882–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thapaliya M, Chompunud Na Ayudhya C, Amponnawarat A, Roy S, Ali H. Mast cell-specific MRGPRX2: a key modulator of neuro-immune interaction in allergic diseases. Curr Allergy Asthma Rep. 2021;21:3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, et al. Activation of mast-cell-expressed Mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity. 2019;50:1163–71.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia T, Che D, Zheng Y, Zhang H, Li Y, Zhou T, et al. Mast cells initiate type 2 inflammation through tryptase released by MRGPRX2/MRGPRB2 activation in atopic dermatitis. J Invest Dermatol. 2024;144:53–62.e2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Zhao T, Liu S, Wu Q, Johnson O, Wu Z, et al. MRGPRX4 is a bile acid receptor for human cholestatic itch. Elife. 2019;8:e48431.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meixiong J, Vasavda C, Green D, Zheng Q, Qi L, Kwatra SG, et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch. Elife. 2019;8:e44116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meixiong J, Vasavda C, Snyder SH, Dong X. MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc Natl Acad Sci USA. 2019;116:10525–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Taylor N, Xie Y, Ford R, Johnson J, Paulsen JE, et al. Cloning and expression of MRG receptors in macaque, mouse, and human. Brain Res Mol Brain Res. 2005;133:187–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, et al. Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci USA. 2002;99:8573–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox PJ, Pitcher T, Trim SA, Bell CH, Qin W, Kinloch RA. The effect of deletion of the orphan G-protein coupled receptor (GPCR) gene MrgE on pain-like behaviours in mice. Mol Pain. 2008;4:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Q, Han Y, Wu K, He Y, Jiang X, Liu P, et al. MrgprF acts as a tumor suppressor in cutaneous melanoma by restraining PI3K/Akt signaling. Signal Transduct Target Ther. 2022;7:147.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gembardt F, Grajewski S, Vahl M, Schultheiss HP, Walther T. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem. 2008;319:115–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsagareli MG, Nozadze I. An overview on transient receptor potential channels superfamily. Behav Pharmacol. 2020;31:413–34.

    Article 
    PubMed 

    Google Scholar
     

  • Shim WS, Tak MH, Lee MH, Kim M, Kim M, Koo JY, et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci. 2007;27:2331–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133:448–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang G, Savinko T, Wolff H, Dieu-Nosjean MC, Kemeny L, Homey B, et al. Repeated epicutaneous exposures to ovalbumin progressively induce atopic dermatitis-like skin lesions in mice. Clin Exp Allergy. 2007;37:151–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu Y, Pan WH, Wang XR, Liu Y, Chen M, Xu XG, et al. Tryptase and protease-activated receptor-2 stimulate scratching behavior in a murine model of ovalbumin-induced atopic-like dermatitis. Int Immunopharmacol. 2015;28:507–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee KP, Koshelev MV. Upcoming topical TRPV1 anti-pruritic compounds. Dermatol Online J. 2020;26:13030/qt188477hq.

    PubMed 

    Google Scholar
     

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398:436–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bíró T, Tóth BI, Marincsák R, Dobrosi N, Géczy T, Paus R. TRP channels as novel players in the pathogenesis and therapy of itch. Biochim Biophys Acta. 2007;1772:1004–21.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang D, Spielmann A, Wang L, Ding G, Huang F, Gu Q, et al. Mast-cell degranulation induced by physical stimuli involves the activation of transient-receptor-potential channel TRPV2. Physiol Res. 2012;61:113–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nattkemper LA, Tey HL, Valdes-Rodriguez R, Lee H, Mollanazar NK, Albornoz C, et al. The genetics of chronic itch: gene expression in the skin of patients with atopic dermatitis and psoriasis with severe itch. J Invest Dermatol. 2018;138:1311–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang P, Zhu MX. TRPV3. Handb Exp Pharmacol. 2014;222:273–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahmoud O, Soares GB, Yosipovitch G. Transient receptor potential channels and itch. Int J Mol Sci. 2022;24:420.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Munanairi A, Liu XY, Zhang J, Hu L, Hu M, et al. PAR2 mediates itch via TRPV3 signaling in keratinocytes. J Invest Dermatol. 2020;140:1524–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirolkar P, Mishra SK. Role of TRP ion channels in pruritus. Neurosci Lett. 2022;768:136379.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, Luo A, Kamau PM, Takomthong P, Hu J, Boonyarat C, et al. A plant-derived TRPV3 inhibitor suppresses pain and itch. Br J Pharmacol. 2021;178:1669–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Z, Chen Q, Lee M, Cao X, Zhang J, Ma D, et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am J Hum Genet. 2012;90:558–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsagareli MG, Follansbee T, Iodi Carstens M, Carstens E. Targeting transient receptor potential (TRP) channels, Mas-related G-protein-coupled receptors (Mrgprs), and protease-activated receptors (PARs) to relieve itch. Pharmaceuticals. 2023;16:1707.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larkin C, Chen W, Szabó IL, Shan C, Dajnoki Z, Szegedi A, et al. Novel insights into the TRPV3-mediated itch in atopic dermatitis. J Allergy Clin Immunol. 2021;147:1110–4. e5

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Henry G, Chen Y. Emerging role of transient receptor potential vanilloid 4 (TRPV4) ion channel in acute and chronic itch. Int J Mol Sci. 2021;22:7591.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo J, Feng J, Yu G, Yang P, Mack MR, Du J, et al. Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and nonallergic chronic itch. J Allergy Clin Immunol. 2018;141:608–19.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan J, Ye F, Ju Y, Wang D, Chen J, Zhang X, et al. Cimifugin relieves pruritus in psoriasis by inhibiting TRPV4. Cell Calcium. 2021;97:102429.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, Escalera J, Balakrishna S, Fan L, Caceres AI, Robinson E, et al. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. FASEB J. 2013;27:3549–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson SR, Thé L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155:285–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Wang ZL, Yeo M, Zhang QJ, López-Romero AE, Ding HP, et al. Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology. 2021;161:301–17.e16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Liu Y, Limjunyawong N, Narang C, Jamaldeen H, Yu S, et al. Sensory neuron-expressed TRPC3 mediates acute and chronic itch. Pain. 2023;164:98–110.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, et al. HTR7 mediates serotonergic acute and chronic itch. Neuron. 2015;87:124–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Z, Hu H. TRP channels as drug targets to relieve itch. Pharmceuticals. 2018;11:100.

    Article 
    CAS 

    Google Scholar
     

  • Lee SH, Cho PS, Tonello R, Lee HK, Jang JH, Park GY, et al. Peripheral serotonin receptor 2B and transient receptor potential channel 4 mediate pruritus to serotonergic antidepressants in mice. J Allergy Clin Immunol. 2018;142:1349–52.e16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Mikrani R, He Y, Faran Ashraf Baig MM, Abbas M, Naveed M, et al. TRPM8 channels: a review of distribution and clinical role. Eur J Pharmacol. 2020;882:173312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palkar R, Ongun S, Catich E, Li N, Borad N, Sarkisian A, et al. Cooling relief of acute and chronic itch requires TRPM8 channels and neurons. J Invest Dermatol. 2018;138:1391–9.

    Article 
    CAS 

    Google Scholar
     

  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Berta T, Xu ZZ, Park CK, L, Zhang N, et al. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J Clin Invest. 2012;122:2195–207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szöllősi AG, McDonald I, Szabó IL, Meng J, van den Bogaard E, Steinhoff M. TLR3 in chronic human itch: a keratinocyte-associated mechanism of peripheral itch sensitization. J Invest Dermatol. 2019;139:2393–6.e6.

    Article 
    PubMed 

    Google Scholar
     

  • Wang ZH, Feng Y, Hu Q, Wang XL, Zhang L, Liu TT, et al. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice. J Cell Physiol. 2023;238:257–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gangwar RS, Gudjonsson JE, Ward NL. Mouse models of psoriasis: a comprehensive review. J Invest Dermatol. 2022;142:884–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min H, Lee H, Lim H, Jang YH, Chung SJ, Lee CJ, et al. TLR4 enhances histamine-mediated pruritus by potentiating TRPV1 activity. Mol Brain. 2014;7:59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu ZZ, Kim YH, Bang S, Zhang Y, Berta T, Wang F, et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med. 2015;21:1326–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan H, Fatima M, Li A, Lee H, Cai W, Horwitz L, et al. Identification of a spinal circuit for mechanical and persistent spontaneous itch. Neuron. 2019;103:1135–49.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler CW, Taylor KG, Peterson KE. Location is everything: let-7b microRNA and TLR7 signaling results in a painful TRP. Sci Signal. 2014;7:pe14.

    Article 
    PubMed 

    Google Scholar
     

  • Wu Y, Liu L, Bian C, Diao Q, Nisar MF, Jiang X, et al. MicroRNA let-7b inhibits keratinocyte differentiation by targeting IL-6 mediated ERK signaling in psoriasis. Cell Commun Signal. 2018;16:58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hill RZ, Loud MC, Dubin AE, Peet B, Patapoutian A. PIEZO1 transduces mechanical itch in mice. Nature. 2022;607:104–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng J, Luo J, Yang P, Du J, Kim BS, Hu H. Piezo2 channel-Merkel cell signaling modulates the conversion of touch to itch. Science. 2018;360:530–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auyeung KL, Kim BS. Emerging concepts in neuropathic and neurogenic itch. Ann Allergy Asthma Immunol. 2023;131:561–6.

    Article 
    CAS 

    Google Scholar
     

  • Imamachi N, Park GH, Lee H, Anderson DJ, Simon MI, Basbaum AI, et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci USA. 2009;106:11330–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He A, Feldman SR, Fleischer AB Jr. An assessment of the use of antihistamines in the management of atopic dermatitis. J Am Acad Dermatol. 2018;79:92–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dressler C, Rosumeck S, Werner RN, Magerl M, Metz M, Maurer M, et al. Executive summary of the methods report for ‘The EAACI/GA(2) LEN/EDF/WAO Guideline for the Definition, Classification, Diagnosis and Management of Urticaria. The 2017 Revision and Update’. Allergy. 2018;73:1145–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang J, Polgár E, Solinski HJ, Mishra SK, Tseng PY, Iwagaki N, et al. Circuit dissection of the role of somatostatin in itch and pain. Nat Neurosci. 2018;21:707–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18:145–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng QT, Liu XY, Liu XT, Liu J, Munanairi A, Barry DM, et al. BNP facilitates NMB-encoded histaminergic itch via NPRC-NMBR crosstalk. Elife. 2021;10:e71689.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature. 2007;448:700–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Wang Y, Tao T, Zeng L, Wang D, Wen Y, et al. GRPR/extracellular signal-regulated kinase and NPRA/extracellular signal-regulated kinase signaling pathways play a critical role in spinal transmission of chronic itch. J Invest Dermatol. 2021;141:863–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu X, Wang D, Wen Y, Zeng L, Li Y, Tao T, et al. Spinal GRPR and NPRA contribute to chronic itch in a murine model of allergic contact dermatitis. J Invest Dermatol. 2020;140:1856–66.e7

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu D, Deng J, Liu KF, Wu ZY, Shi YF, Guo WM, et al. A central neural circuit for itch sensation. Science. 2017;357:695–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, et al. Sensory neurons Co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171:217–28.e13.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Campion M, Smith L, Gatault S, Métais C, Buddenkotte J, Steinhoff M. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp Dermatol. 2019;28:1501–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du LX, Zhu JY, Mi WL. Cytokines and chemokines modulation of itch. Neuroscience. 2022;495:74–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu J, Wu K, Zeng Q, Xiang Y, Gao L, Huang J. Serum interleukin-31 level and pruritus in atopic dermatitis: A Meta-analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43:124–30.

    PubMed 

    Google Scholar
     

  • Misery L, Pierre O, Le Gall-Ianotto C, Lebonvallet N, Chernyshov PV, Le Garrec R, et al. Basic mechanisms of itch. J Allergy Clin Immunol. 2023;152:11–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng J, Moriyama M, Feld M, Buddenkotte J, Buhl T, Szöllösi A, et al. New mechanism underlying IL-31-induced atopic dermatitis. J Allergy Clin Immunol. 2018;141:1677–89.e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okano M, Hirahara K, Kiuchi M, Onoue M, Iwamura C, Kokubo K, et al. Interleukin-33-activated neuropeptide CGRP-producing memory Th2 cells cooperate with somatosensory neurons to induce conjunctival itch. Immunity. 2022;55:2352–68.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trier AM, Mack MR, Fredman A, Tamari M, Ver Heul AM, Zhao Y, et al. IL-33 signaling in sensory neurons promotes dry skin itch. J Allergy Clin Immunol. 2022;149:1473–80.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grenier A, Combaux D, Chastre J, Gougerot-Pocidalo MA, Gibert C, Dehoux M, et al. Oncostatin M production by blood and alveolar neutrophils during acute lung injury. Lab Invest. 2001;81:133–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tseng PY, Hoon MA. Oncostatin M can sensitize sensory neurons in inflammatory pruritus. Sci Transl Med. 2021;13:eabe3037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin W, Zhou Q, Liu C, Ying M, Xu S. Increased plasma IL-17, IL-31, and IL-33 levels in chronic spontaneous urticaria. Sci Rep. 2017;7:17797.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh CM, Hill RZ, Schwendinger-Schreck J, Deguine J, Brock EC, Kucirek N, et al. Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. Elife. 2019;8:e48448.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svanberg S, Li Z, Öhlund P, Roy A, Åbrink M. Mast cells limit ear swelling independently of the chymase mouse mast cell protease 4 in an MC903-induced atopic dermatitis-like mouse model. Int J Mol Sci. 2020;21:6311.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra SK, Wheeler JJ, Pitake S, Ding H, Jiang C, Fukuyama T, et al. Periostin activation of integrin receptors on sensory neurons induces allergic itch. Cell Rep. 2020;31:107472.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanjel B, Kim BH, Song MH, Carstens E, Shim WS. Glucosylsphingosine evokes pruritus via activation of 5-HT2A receptor and TRPV4 in sensory neurons. Br J Pharmacol. 2022;179:2193–207.

    Article 
    CAS 

    Google Scholar
     

  • Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, et al. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell. 2023;186:5375–93.e25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rochman Y, Dienger-Stambaugh K, Richgels PK, Lewkowich IP, Kartashov AV, Barski A, et al. TSLP signaling in CD4+ T cells programs a pathogenic T helper 2 cell state. Sci Signal. 2018;11:eaam8858.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakashima C, Ishida Y, Kitoh A, Otsuka A, Kabashima K. Interaction of peripheral nerves and mast cells, eosinophils, and basophils in the development of pruritus. Exp Dermatol. 2019;28:1405–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun S, Xu Q, Guo C, Guan Y, Liu Q, Dong X. Leaky gate model: intensity-dependent coding of pain and itch in the spinal cord. Neuron. 2017;93:840–53.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lay M, Dong X. Neural mechanisms of itch. Annu Rev Neurosci. 2020;43:187–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross SE, Mardinly AR, McCord AE, Zurawski J, Cohen S, Jung C, et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron. 2010;65:886–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acton D, Ren X, Di Costanzo S, Dalet A, Bourane S, Bertocchi I, et al. Spinal neuropeptide Y1 receptor-expressing neurons form an essential excitatory pathway for mechanical itch. Cell Rep. 2019;28:625–39.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, et al. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron. 2023;111:1812–29.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao ZR, Chen WZ, Liu MZ, Chen XJ, Wan L, Zhang XY, et al. Tac1-expressing neurons in the periaqueductal gray facilitate the itch-scratching cycle via descending regulation. Neuron. 2019;101:45–59.e9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong X, Dong X. Peripheral and central mechanisms of itch. Neuron. 2018;98:482–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng J, Zhou H, Lin JK, Shen ZX, Chen WZ, Wang LH, et al. The parabrachial nucleus directly channels spinal nociceptive signals to the intralaminar thalamic nuclei, but not the amygdala. Neuron. 2020;107:909–23.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benevento M, Alpár A, Gundacker A, Afjehi L, Balueva K, Hevesi Z, et al. A brainstem-hypothalamus neuronal circuit reduces feeding upon heat exposure. Nature. 2024;628:826–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders KM, Sakai K, Henry TD, Hashimoto T, Akiyama T. A subpopulation of amygdala neurons mediates the affective component of itch. J Neurosci. 2019;39:3345–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su XY, Chen M, Yuan Y, Li Y, Guo SS, Luo HQ, et al. Central processing of itch in the midbrain reward center. Neuron. 2019;102:858–72.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuberbier T, Aberer W, Asero R, Abdul Latiff AH, Baker D, Ballmer-Weber B, et al. The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy. 2018;73:1393–414.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satoh T, Yokozeki H, Murota H, Tokura Y, Kabashima K, Takamori K, et al. 2020 guidelines for the diagnosis and treatment of cutaneous pruritus. J Dermatol. 2021;48:e399–e413.

    PubMed 

    Google Scholar
     

  • Kaur R, Sinha VR. Antidepressants as antipruritic agents: A review. Eur Neuropsychopharmacol. 2018;28:341–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu B, Shao Y, Zhang J, Dong XL, Liu WL, Yang H, et al. Polymorphisms in human histamine receptor H4 gene are associated with atopic dermatitis. Br J Dermatol. 2010;162:1038–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaper-Gerhardt K, Wohlert M, Mommert S, Kietzmann M, Werfel T, Gutzmer R. Stimulation of histamine H4 receptors increases the production of IL-9 in Th9 polarized cells. Br J Pharmacol. 2020;177:614–22.

    Article 
    CAS 

    Google Scholar
     

  • Murata Y, Song M, Kikuchi H, Hisamichi K, Xu XL, Greenspan A, et al. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4 R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. J Dermatol. 2015;42:129–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werfel T, Layton G, Yeadon M, Whitlock L, Osterloh I, Jimenez P, et al. Efficacy and safety of the histamine H4 receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143:1830–7.e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fishbane S, Jamal A, Munera C, Wen W, Menzaghi F. A phase 3 trial of Difelikefalin in hemodialysis patients with pruritus. N Engl J Med. 2020;382:222–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deeks ED. Difelikefalin: first approval. Drugs. 2021;81:1937–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Jiang C, Yao H, Chen O, Rahman S, Gu Y, et al. Central opioid receptors mediate morphine-induced itch and chronic itch via disinhibition. Brain. 2021;144:665–81.

    Article 
    PubMed 

    Google Scholar
     

  • Munanairi A, Liu XY, Barry DM, Yang Q, Yin JB, Jin H, et al. Non-canonical opioid signaling inhibits itch transmission in the spinal cord of mice. Cell Rep. 2018;23:866–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ádám D, Arany J, Tóth KF, Tóth BI, Szöllősi AG, Oláh A. Opioidergic signaling-A neglected, yet potentially important player in atopic dermatitis. Int J Mol Sci. 2022;23:4140.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, et al. A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res. 1998;29:233–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fehrenbacher JC, Taylor CP, Vasko MR. Pregabalin and gabapentin reduce release of substance P and CGRP from rat spinal tissues only after inflammation or activation of protein kinase C. Pain. 2003;105:133–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda KM, Sharma D, Schonfeld AR, Kwatra SG. Gabapentin and pregabalin for the treatment of chronic pruritus. J Am Acad Dermatol. 2016;75:619–25.e6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Prim. 2018;4:1.

    Article 
    PubMed 

    Google Scholar
     

  • Nakahara T, Morimoto H, Murakami N, Furue M. Mechanistic insights into topical tacrolimus for the treatment of atopic dermatitis. Pediatr Allergy Immunol. 2018;29:233–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ruzicka T, Bieber T, Schöpf E, Rubins A, Dobozy A, Bos JD, et al. A short-term trial of tacrolimus ointment for atopic dermatitis. European Tacrolimus Multicenter Atopic Dermatitis Study Group. N Engl J Med. 1997;337:816–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saripalli YV, Gadzia JE, Belsito DV. Tacrolimus ointment 0.1% in the treatment of nickel-induced allergic contact dermatitis. J Am Acad Dermatol. 2003;49:477–82.

    Article 
    PubMed 

    Google Scholar
     

  • Touw CR, Hakkaart-Van Roijen L, Verboom P, Paul C, Rutten FF, Finlay AY. Quality of life and clinical outcome in psoriasis patients using intermittent cyclosporin. Br J Dermatol. 2001;144:967–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grattan CE, O’Donnell BF, Francis DM, Niimi N, Barlow RJ, Seed PT, et al. Randomized double-blind study of cyclosporin in chronic ‘idiopathic’ urticaria. Br J Dermatol. 2000;143:365–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zebda R, Paller AS. Phosphodiesterase 4 inhibitors. J Am Acad Dermatol. 2018;78:S43–s52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashim PW, Chima M, Kim HJ, Bares J, Yao CJ, Singer G, et al. Crisaborole 2% ointment for the treatment of intertriginous, anogenital, and facial psoriasis: A double-blind, randomized, vehicle-controlled trial. J Am Acad Dermatol. 2020;82:360–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeki H, Baba N, Oshiden K, Abe Y, Tsubouchi H. Phase 2, randomized, double-blind, placebo-controlled, 4-week study to evaluate the safety and efficacy of OPA- 15406 (difamilast), a new topical selective phosphodiesterase type-4 inhibitor, in Japanese pediatric patients aged 2-14 years with atopic dermatitis. J Dermatol. 2020;47:17–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chovatiya R, Paller AS. JAK inhibitors in the treatment of atopic dermatitis. J Allergy Clin Immunol. 2021;148:927–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ju T, Labib A, Vander Does A, Yosipovitch G. Topical Janus kinase-signal transducers and activators of transcription inhibitor tofacitinib is effective in reducing nonatopic dermatitis chronic itch: A case series. J Am Acad Dermatol. 2022;87:400–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa H, Nemoto O, Igarashi A, Saeki H, Murata R, Kaino H, et al. Long-term safety and efficacy of delgocitinib ointment, a topical Janus kinase inhibitor, in adult patients with atopic dermatitis. J Dermatol. 2020;47:114–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa H, Nemoto O, Igarashi A, Saeki H, Kabashima K, Oda M, et al. Delgocitinib ointment in pediatric patients with atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J Am Acad Dermatol. 2021;85:854–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim BS, Howell MD, Sun K, Papp K, Nasir A, Kuligowski ME. Treatment of atopic dermatitis with ruxolitinib cream (JAK1/JAK2 inhibitor) or triamcinolone cream. J Allergy Clin Immunol. 2020;145:572–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uppal SK, Kearns DG, Chat VS, Wu JJ. Ruxolitinib cream for the treatment of vitiligo. Lancet. 2020;396:1735–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaeschen AS, Wolf D, Brossart P, Bieber T, Wenzel J. JAK inhibitor ruxolitinib inhibits the expression of cytokines characteristic of cutaneous lupus erythematosus. Exp Dermatol. 2017;26:728–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simpson EL, Lacour JP, Spelman L, Galimberti R, Eichenfield LF, Bissonnette R, et al. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids: results from two randomized monotherapy phase III trials. Br J Dermatol. 2020;183:242–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torrelo A, Rewerska B, Galimberti M, Paller A, Yang CY, Prakash A, et al. Efficacy and safety of baricitinib in combination with topical corticosteroids in paediatric patients with moderate-to-severe atopic dermatitis with an inadequate response to topical corticosteroids: results from a phase III, randomized, double-blind, placebo-controlled study (BREEZE-AD PEDS). Br J Dermatol. 2023;189:23–32.

    Article 
    PubMed 

    Google Scholar
     

  • Bieber T, Reich K, Paul C, Tsunemi Y, Augustin M, Lacour JP, et al. Efficacy and safety of baricitinib in combination with topical corticosteroids in patients with moderate-to-severe atopic dermatitis with inadequate response, intolerance or contraindication to ciclosporin: results from a randomized, placebo-controlled, phase III clinical trial (BREEZE-AD4). Br J Dermatol. 2022;187:338–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Guo L, Wang L, Jiang X. The efficacy and safety of tofacitinib, peficitinib, solcitinib, baricitinib, abrocitinib and deucravacitinib in plaque psoriasis – A network meta-analysis. J Eur Acad Dermatol Venereol. 2022;36:1937–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blauvelt A, Teixeira HD, Simpson EL, Costanzo A, De Bruin-Weller M, Barbarot S, et al. Efficacy and safety of upadacitinib vs dupilumab in adults with moderate-to-severe atopic dermatitis: a randomized clinical trial. JAMA Dermatol. 2021;157:1047–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Zhang L, Ding Y, Tao X, Ji C, Dong X, et al. Efficacy and safety of SHR0302, a highly selective Janus Kinase 1 inhibitor, in patients with moderate to severe atopic dermatitis: a phase II randomized clinical trial. Am J Clin Dermatol. 2021;22:877–89.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werth VP, Fleischmann R, Robern M, Touma Z, Tiamiyu I, Gurtovaya O, et al. Filgotinib or lanraplenib in moderate to severe cutaneous lupus erythematosus: a phase 2, randomized, double-blind, placebo-controlled study. Rheumatology. 2022;61:2413–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landis MN, Arya M, Smith S, Draelos Z, Usdan L, Tarabar S, et al. Efficacy and safety of topical brepocitinib for the treatment of mild-to-moderate atopic dermatitis: a phase IIb, randomized, double-blind, vehicle-controlled, dose-ranging and parallel-group study. Br J Dermatol. 2022;187:878–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landis MN, Smith SR, Berstein G, Fetterly G, Ghosh P, Feng G, et al. Efficacy and safety of topical brepocitinib cream for mild-to-moderate chronic plaque psoriasis: a phase IIb randomized double-blind vehicle-controlled parallel-group study. Br J Dermatol. 2023;189:33–41.

    Article 
    PubMed 

    Google Scholar
     

  • Catlett IM, Hu Y, Gao L, Banerjee S, Gordon K, Krueger JG. Molecular and clinical effects of selective tyrosine kinase 2 inhibition with deucravacitinib in psoriasis. J Allergy Clin Immunol. 2022;149:2010–20.e8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strober B, Thaçi D, Sofen H, Kircik L, Gordon KB, Foley P, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 Program fOr Evaluation of TYK2 inhibitor psoriasis second trial. J Am Acad Dermatol. 2023;88:40–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebwohl M, Warren RB, Sofen H, Imafuku S, Paul C, Szepietowski JC, et al. Deucravacitinib in plaque psoriasis: 2-year safety and efficacy results from the phase III POETYK trials. Br J Dermatol. 2024;190:668–79.

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong AW, Gooderham M, Warren RB, Papp KA, Strober B, Thaçi D, et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: Efficacy and safety results from the 52-week, randomized, double-blinded, placebo-controlled phase 3 POETYK PSO-1 trial. J Am Acad Dermatol. 2023;88:29–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morand E, Pike M, Merrill JT, van Vollenhoven R, Werth VP, Hobar C, et al. Deucravacitinib, a tyrosine kinase 2 inhibitor, in systemic lupus erythematosus: a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2023;75:242–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tefferi A, Gangat N, Pardanani A. Jaktinib (JAK1/2 inhibitor): A momelotinib derivative with similar activity and optimized dosing schedule. Am J Hematol. 2022;97:1507–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Changelian P, Xu C, Mnich S, Hope H, Kostecki K, Hirsch J, et al. ATI-1777, a topical Jak1/3 inhibitor, may benefit atopic dermatitis without systemic drug exposure: results from preclinical development and phase 2a randomized control study ATI-1777-AD-201. JID Innov. 2024;4:100251.

    Article 
    PubMed 

    Google Scholar
     

  • Thoma G, Duthaler RO, Waelchli R, Hauchard A, Bruno S, Strittmatter-Keller U, et al. Discovery and characterization of the topical soft JAK inhibitor CEE321 for atopic dermatitis. J Med Chem. 2023;66:2161–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng L, Wan L, Liao T, Wang L, Wang J, Wu X, et al. Recent progress on tyrosine kinase 2 JH2 inhibitors. Int Immunopharmacol. 2023;121:110434.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen CX, Zhang W, Qu S, Xia F, Zhu Y, Chen B. A novel highly selective allosteric inhibitor of tyrosine kinase 2 (TYK2) can block inflammation- and autoimmune-related pathways. Cell Commun Signal. 2023;21:287.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lleo A, Wang GQ, Gershwin ME, Hirschfield GM. Primary biliary cholangitis. Lancet. 2020;396:1915–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nevens F, Trauner M, Manns MP. Primary biliary cholangitis as a roadmap for the development of novel treatments for cholestatic liver diseases(†). J Hepatol. 2023;78:430–41.

    Article 
    PubMed 

    Google Scholar
     

  • Younossi ZM, Stepanova M, Nader F, Loomba R, Anstee QM, Ratziu V, et al. Obeticholic acid impact on quality of life in patients with nonalcoholic steatohepatitis: REGENERATE 18-month interim analysis. Clin Gastroenterol Hepatol. 2022;20:2050–8.e12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marx D, Alnouri MW, Clemens S, Gedschold R, Riedel Y, Al Hamwi G, et al. Discovery of potent agonists for the predominant variant of the orphan MAS-related G protein-coupled receptor X4 (MRGPRX4). J Med Chem. 2023;66:15674–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotliar IB, Ceraudo E, Kemelmakher-Liben K, Oren DA, Lorenzen E, Dodig-Crnković T, et al. Itch receptor MRGPRX4 interacts with the receptor activity-modifying proteins. J Biol Chem. 2023;299:104664.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ständer S, Yosipovitch G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br J Dermatol. 2019;181:932–8.

    Article 

    Google Scholar
     

  • Alam M, Buddenkotte J, Ahmad F, Steinhoff M. Neurokinin 1 receptor antagonists for pruritus. Drugs. 2021;81:621–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welsh SE, Xiao C, Kaden AR, Brzezynski JL, Mohrman MA, Wang J, et al. Neurokinin-1 receptor antagonist tradipitant has mixed effects on itch in atopic dermatitis: results from EPIONE, a randomized clinical trial. J Eur Acad Dermatol Venereol. 2021;35:e338–e340.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vincenzi B, Trower M, Duggal A, Guglielmini P, Harris P, Jackson D, et al. Neurokinin-1 antagonist orvepitant for EGFRI-induced pruritus in patients with cancer: a randomised, placebo-controlled phase II trial. BMJ Open. 2020;10:e030114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azimi E, Reddy VB, Shade KC, Anthony RM, Talbot S, Pereira PJS, et al. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight. 2016;1:e89362.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andoh T, Takayama Y, Kuraishi Y. Involvement of leukotriene B4 in dermatophyte-related itch in mice. Pharmacol Rep. 2014;66:699–703.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierre O, Fouchard M, Buscaglia P, Le Goux N, Leschiera R, Mignen O, et al. Calcium increase and substance P release induced by the neurotoxin Brevetoxin-1 in sensory neurons: involvement of PAR2 activation through both cathepsin S and canonical signaling. Cells. 2020;9:2704.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braz JM, Dembo T, Charruyer A, Ghadially R, Fassett MS, Basbaum AI. Genetic priming of sensory neurons in mice that overexpress PAR2 enhances allergen responsiveness. Proc Natl Acad Sci USA. 2021;118:e2021386118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barr TP, Garzia C, Guha S, Fletcher EK, Nguyen N, Wieschhaus AJ, et al. PAR2 pepducin-based suppression of inflammation and itch in atopic dermatitis models. J Invest Dermatol. 2019;139:412–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilzopolski J, Kietzmann M, Mishra SK, Stark H, Bäumer W, Rossbach K. TRPV1 and TRPA1 channels are both involved downstream of histamine-induced itch. Biomolecules. 2021;11:1166.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han Q, Liu D, Convertino M, Wang Z, Jiang C, Kim YH, et al. miRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus. Neuron. 2018;99:449–63.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park CW, Kim BJ, Lee YW, Won C, Park CO, Chung BY, et al. Asivatrep, a TRPV1 antagonist, for the topical treatment of atopic dermatitis: Phase 3, randomized, vehicle-controlled study (CAPTAIN-AD). J Allergy Clin Immunol. 2022;149:1340–7.e4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson RA, Robertson J, Mistry H, McCallum S, Fernando D, Wyres M, et al. A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers. PLoS One. 2014;9:e100610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dang TH, Kim JY, Kim HJ, Kim BJ, Kim WK, Nam JH. Alpha-mangostin: a potent inhibitor of TRPV3 and pro-inflammatory cytokine secretion in keratinocytes. Int J Mol Sci. 2023;24:12930.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun XY, Sun LL, Qi H, Gao Q, Wang GX, Wei NN, et al. Antipruritic effect of natural coumarin osthole through selective inhibition of thermosensitive TRPV3 channel in the skin. Mol Pharmacol. 2018;94:1164–73.

    Article 
    CAS 

    Google Scholar
     

  • Neuberger A, Nadezhdin KD, Zakharian E, Sobolevsky AI. Structural mechanism of TRPV3 channel inhibition by the plant-derived coumarin osthole. EMBO Rep. 2021;22:e53233.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi H, Shi Y, Wu H, Niu C, Sun X, Wang K. Inhibition of temperature-sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritus. Acta Pharm Sin B. 2022;12:723–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neuberger A, Nadezhdin KD, Sobolevsky AI. Structural mechanism of TRPV3 channel inhibition by the anesthetic dyclonine. Nat Commun. 2022;13:2795.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan J, Hu L, Yue Z, Liao D, Guo F, Ke H, et al. Structural basis of TRPV3 inhibition by an antagonist. Nat Chem Biol. 2023;19:81–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kittaka H, Yamanoi Y, Tominaga M. Transient receptor potential vanilloid 4 (TRPV4) channel as a target of crotamiton and its bimodal effects. Pflug Arch. 2017;469:1313–23.

    Article 
    CAS 

    Google Scholar
     

  • Qin Z, Xiang L, Zheng S, Zhao Y, Qin Y, Zhang L, et al. Vitexin inhibits pain and itch behavior via modulating TRPV4 activity in mice. Biomed Pharmacother. 2023;165:115101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung MJ, Kim JC, Wei ET, Selescu T, Chung BY, Park CW, et al. A randomized, vehicle-controlled clinical trial of a synthetic TRPM8 agonist (Cryosim-1) gel for itch. J Am Acad Dermatol. 2021;84:869–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang SY, Choi MG, Wei ET, Selescu T, Lee SY, Kim JC, et al. TRPM8 agonist (cryosim-1) gel for scalp itch: a randomised, vehicle-controlled clinical trial. J Eur Acad Dermatol Venereol. 2022;36:e588–e589.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee S, Wei ET, Selescu T, Babes A, Park J, Kim J, et al. Histamine- and pruritogen-induced itch is inhibited by a TRPM8 agonist in humans: a randomized, vehicle-controlled trial. Br J Dermatol. 2024;190:885–94.

    Article 
    PubMed 

    Google Scholar
     

  • Tian W, He D, Liu J, Chen F, Zhang W, Hu J, et al. Topical borneol relieves nonhistaminergic pruritus via targeting TRPA1 and TRPM8 channels in peripheral nerve terminals of mice. Eur J Pharmacol. 2023;953:175833.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo M, He J, Yin L, Zhan P, Zhao Z, Xiong H, et al. Borneol exerts its antipruritic effects by inhibiting TRPA1 and activating TRPM8. J Ethnopharmacol. 2024;322:117581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC chemokine receptor 4 (CCR4) as a possible new target for therapy. Int J Mol Sci. 2022;23:15638.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuo K, Kitahata K, Kaibori Y, Arima Y, Iwama A, Ito M, et al. CCR4 involvement in the expansion of T helper type 17 cells in a mouse model of psoriasis. J Invest Dermatol. 2021;141:1985–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato M, Matsuo K, Susami Y, Yamashita A, Hayasaka H, Hara Y, et al. A CCR4 antagonist attenuates atopic dermatitis-like skin inflammation by inhibiting the recruitment and expansion of Th2 cells and Th17 cells. Int Immunol. 2023;35:437–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasamon YL, Chen H, de Claro RA, Nie L, Ye J, Blumenthal GM, et al. FDA approval summary: mogamulizumab-kpkc for mycosis fungoides and Sézary syndrome. Clin Cancer Res. 2019;25:7275–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bissonnette R, DuBois J, Facheris P, Del Duca E, Kim M, Correa Da Rosa J, et al. Clinical and molecular effects of oral CCR4 antagonist RPT193 in atopic dermatitis: A Phase 1 study. Allergy. 2023;79:924–36.

    Article 
    PubMed 

    Google Scholar
     

  • Fu Y, Lin Q, Zhang Z, Zhang L. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B. 2020;10:414–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsner JS, Carlsson M, Stougaard JK, Nygaard U, Buchner M, Fölster-Holst R, et al. The OX40 axis is associated with both systemic and local involvement in atopic dermatitis. Acta Derm Venereol. 2020;100:adv00099.

    Article 
    PubMed 

    Google Scholar
     

  • Iriki H, Takahashi H, Amagai M. Diverse role of OX40 on T cells as a therapeutic target for skin diseases. J Invest Dermatol. 2023;143:545–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Müller S, Maintz L, Bieber T. Treatment of atopic dermatitis: Recently approved drugs and advanced clinical development programs. Allergy. 2024;79:1501–15.

    Article 
    PubMed 

    Google Scholar
     

  • Guttman-Yassky E, Pavel AB, Zhou L, Estrada YD, Zhang N, Xu H, et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;144:482–93.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa H, Iizuka H, Nemoto O, Shimabe M, Furukawa Y, Kikuta N, et al. Safety, tolerability and efficacy of repeated intravenous infusions of KHK4083, a fully human anti-OX40 monoclonal antibody, in Japanese patients with moderate to severe atopic dermatitis. J Dermatol Sci. 2020;99:82–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guttman-Yassky E, Simpson EL, Reich K, Kabashima K, Igawa K, Suzuki T, et al. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: a multicentre, double-blind, placebo-controlled phase 2b study. Lancet. 2023;401:204–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weidinger S, Bieber T, Cork MJ, Reich A, Wilson R, Quaratino S, et al. Safety and efficacy of amlitelimab, a fully human nondepleting, noncytotoxic anti-OX40 ligand monoclonal antibody, in atopic dermatitis: results of a phase IIa randomized placebo-controlled trial. Br J Dermatol. 2023;189:531–9.

    Article 
    PubMed 

    Google Scholar
     

  • Papp KA, Gooderham MJ, Girard G, Raman M, Strout V. Phase I randomized study of KHK4083, an anti-OX40 monoclonal antibody, in patients with mild to moderate plaque psoriasis. J Eur Acad Dermatol Venereol. 2017;31:1324–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo J, Zhu Z, Zhai Y, Zeng J, Li L, Wang D, et al. The role of TSLP in atopic dermatitis: from pathogenetic molecule to therapeutical target. Mediators Inflamm. 2023;2023:7697699.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoy SM. Tezepelumab: first approval. Drugs. 2022;82:461–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simpson EL, Parnes JR, She D, Crouch S, Rees W, Mo M, et al. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: A randomized phase 2a clinical trial. J Am Acad Dermatol. 2019;80:1013–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol. 2021;17:835–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabashima K, Matsumura T, Komazaki H, Kawashima M. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: results from two phase III, long-term studies. Br J Dermatol. 2022;186:642–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silverberg JI, Guttman-Yassky E, Thaçi D, Irvine AD, Stein Gold L, Blauvelt A, et al. Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis. N Engl J Med. 2023;388:1080–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wollenberg A, Howell MD, Guttman-Yassky E, Silverberg JI, Kell C, Ranade K, et al. Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb. J Allergy Clin Immunol. 2019;143:135–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bieber T, Simpson EL, Silverberg JI, Thaçi D, Paul C, Pink AE, et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis. N Engl J Med. 2021;384:1101–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Li S, Ying S, Tang S, Ding Y, Li Y, et al. The IL-23/IL-17 pathway in inflammatory skin diseases: from bench to bedside. Front Immunol. 2020;11:594735.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krueger JG, Wharton KA Jr, Schlitt T, Suprun M, Torene RI, Jiang X, et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J Allergy Clin Immunol. 2019;144:750–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mease PJ, Rahman P, Gottlieb AB, Kollmeier AP, Hsia EC, Xu XL, et al. Guselkumab in biologic-naive patients with active psoriatic arthritis (DISCOVER-2): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2020;395:1126–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghoreschi K, Balato A, Enerbäck C, Sabat R. Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. Lancet. 2021;397:754–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mease PJ, Deodhar AA, van der Heijde D, Behrens F, Kivitz AJ, Neal J, et al. Efficacy and safety of selective TYK2 inhibitor, deucravacitinib, in a phase II trial in psoriatic arthritis. Ann Rheum Dis. 2022;81:815–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue X, De Leon-Tabaldo A, Luna-Roman R, Castro G, Albers M, Schoetens F, et al. Preclinical and clinical characterization of the RORγt inhibitor JNJ-61803534. Sci Rep. 2021;11:11066.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen E, Grajales-Reyes JG, Gereau RWT, Ross SE. Cell type-specific dissection of sensory pathways involved in descending modulation. Trends Neurosci. 2023;46:539–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41401-024-01400-x

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]