Connect with us

Health

Unique homeobox codes delineate all the neuron classes of C. elegans

 


  • 1.

    Zeng, H. & Sanes, J. R. Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18, 530–546 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Hench, J. et al. The homeobox genes of Caenorhabditis elegans and insights into their spatio-temporal expression dynamics during embryogenesis. PLoS ONE 10, e0126947 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Sebe-Pedros, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173, 1520–1534 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Gehring, W. J. Master Control Genes in Development and Evolution: The Homeobox Story (Yale Univ. Press, 1998).

  • 8.

    Way, J. C. & Chalfie, M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell 54, 5–16 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Finney, M., Ruvkun, G. & Horvitz, H. R. The C. elegans cell lineage and differentiation gene unc-86 encodes a protein with a homeodomain and extended similarity to transcription factors. Cell 55, 757–769 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    White, J. G., Southgate, E. & Thomson, J. N. Mutations in the Caenorhabditis elegans unc-4 gene alter the synaptic input to ventral cord motor neurons. Nature 355, 838–841 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Jin, Y., Hoskins, R. & Horvitz, H. R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–783 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Hobert, O. A map of terminal regulators of neuronal identity in Caenorhabditis elegans. Wiley Interdiscip. Rev. Dev. Biol. 5, 474–498 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Lindtner, S. et al. Genomic resolution of DLX-orchestrated transcriptional circuits driving development of forebrain GABAergic neurons. Cell Rep. 28, 2048–2063 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Stettler, O. & Moya, K. L. Distinct roles of homeoproteins in brain topographic mapping and in neural circuit formation. Semin. Cell Dev. Biol. 35, 165–172 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Tahayato, A. et al. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev. Cell 5, 391–402 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Blochlinger, K., Bodmer, R., Jack, J., Jan, L. Y. & Jan, Y. N. Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature 333, 629–635 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Sugino, K. et al. Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. eLife 8, e38619 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9, e50901 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Allen, A. M. et al. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 9, e54074 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Hobert, O., Glenwinkel, L. & White, J. Revisiting neuronal cell type classification in Caenorhabditis elegans. Curr. Biol. 26, R1197–R1203 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Bürglin, T. R. & Affolter, M. Homeodomain proteins: an update. Chromosoma 125, 497–521 (2016).

    PubMed 

    Google Scholar
     

  • 24.

    Bürglin, T. R., Finney, M., Coulson, A. & Ruvkun, G. Caenorhabditis elegans has scores of homoeobox-containing genes. Nature 341, 239–243 (1989).

    ADS 
    PubMed 

    Google Scholar
     

  • 25.

    Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Fuxman Bass, J. I. et al. A gene-centered C. elegans protein–DNA interaction network provides a framework for functional predictions. Mol. Syst. Biol. 12, 884 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Murray, J. I. et al. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat. Methods 5, 703–709 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Yemini, E. et al. NeuroPAL: a neuronal polychromatic atlas of landmarks for whole-brain imaging in C. elegans. Preprint at https://www.biorxiv.org/content/10.1101/676312v1 (2019).

  • 29.

    Hobert, O. Terminal selectors of neuronal identity. Curr. Top. Dev. Biol. 116, 455–475 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Merabet, S. & Mann, R. S. To be specific or not: the critical relationship between Hox and TALE proteins. Trends Genet. 32, 334–347 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Packer, J. S. et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365, eaax1971 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Kratsios, P. et al. An intersectional gene regulatory strategy defines subclass diversity of C. elegans motor neurons. eLife 6, e25751 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Schneider, J. et al. UNC-4 antagonizes Wnt signaling to regulate synaptic choice in the C. elegans motor circuit. Development 139, 2234–2245 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Hobert, O. Development of left/right asymmetry in the Caenorhabditis elegans nervous system: from zygote to postmitotic neuron. Genesis 52, 528–543 (2014).

    PubMed 

    Google Scholar
     

  • 36.

    Serrano-Saiz, E. et al. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155, 659–673 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Serrano-Saiz, E., Oren-Suissa, M., Bayer, E. A. & Hobert, O. Sexually dimorphic differentiation of a C. elegans hub neuron is cell autonomously controlled by a conserved transcription factor. Curr. Biol. 27, 199–209 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Pereira, L. et al. A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife 4, e12432 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Lloret-Fernández, C. et al. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape. eLife 7, e32785 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Doitsidou, M. et al. A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev. 27, 1391–1405 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Dobzhansky, T. Biology, molecular and organismic. Am. Zool. 4, 443–452 (1964).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Dickinson, D. J., Pani, A. M., Heppert, J. K., Higgins, C. D. & Goldstein, B. Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200, 1035–1049 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Dokshin, G. A., Ghanta, K. S., Piscopo, K. M. & Mello, C. C. Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics 210, 781–787 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Sarov, M. et al. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150, 855–866 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Feng, W. et al. A terminal selector prevents a Hox transcriptional switch to safeguard motor neuron identity throughout life. eLife 9, e50065 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Patel, T. & Hobert, O. Coordinated control of terminal differentiation and restriction of cellular plasticity. eLife 6, e24100 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Leyva-Díaz, E. & Hobert, O. Transcription factor autoregulation is required for acquisition and maintenance of neuronal identity. Development 146, dev177378 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Cassata, G. et al. The LIM homeobox gene ceh-14 confers thermosensory function to the AFD neurons in Caenorhabditis elegans. Neuron 25, 587–597 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Way, J. C. & Chalfie, M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 3 (12A), 1823–1833 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Miller, D. M., III & Niemeyer, C. J. Expression of the unc-4 homeoprotein in Caenorhabditis elegans motor neurons specifies presynaptic input. Development 121, 2877–2886 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Kellerer, H., Pferschy, U. & Pisinger, D. Knapsack Problems (Springer, 2004).

  • 53.

    Schrijver, A. Theory of Linear and Integer Programming (John Wiley & Sons, 1998).

  • 54.

    Mukaka, M. M. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos



    Pictures Credit

    ExBUlletin

    to request, modification Contact us at Here or [email protected]