Health
Study describes the first three days of SARS-CoV-2 infection in an ALI model of proximal airway epithelium
In a recent study posted to the bioRxiv* preprint server, researchers evaluated the initial three days of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection via single-cell RNA sequencing (scRNAseq) dataset in humanized in vitro model.
Study: Study: SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. Image Credit: Andrii Vodolazhskyi / Shutterstock
Background Background
The ongoing coronavirus disease 2019 (COVID-19) pandemic has claimed over 5.57 million lives globally since its initial outbreak in 2019. A better understanding of the SARS-CoV-2 infection dynamics is required to treat the disease and fully overcome the threat of COVID -19.
However, there is limited understanding of early SARS-CoV-2 viral entry and infection dynamics in the respiratory tracts, despite extensive global efforts to understand the SARS-CoV-2 infection pattern. The limited knowledge about the early phases of the SARS-CoV -2 infection is inversely proportional to higher mortality rates associated with COVID-19.
About the study
In the present study, the researchers determined the primary mechanism by which SARS-CoV-2 triggers the cellular- and system-level responses in the bronchial epithelium by evaluating the scRNAseq dataset of early SARS-CoV-2 infection in the in vitro air-liquid interface (ALI) model of proximal airway epithelium.
The scRNAseqs were obtained from a previous study, in which after the SARS-CoV-2 inoculation into the ALI cultures of differentiated human bronchial epithelial cells (HBECs), the samples were collected one day post-infection (1dpi), two dpi (2dpi) ), and three dpi (3dpi). Further, the scRNAseqs of the samples collected at three time stamps and an uninfected mock condition were evaluated through de novo analysis.
With the help of viral transcripts indicating SARS-CoV-2, the viral load The ciliated cluster cells were re-analyzed for an in-depth understanding of progenitor cells.
Mapping the scRNAseq against the FANTOM5 database of ligand-receptor interactions revealed cell-cell communication in the SARS-CoV-2-bronchiolar tissue interaction.
Findings
The results indicated that the SARS-CoV-2 gains entry into the tissue via precursors of ciliated cells such as those differentiating from secretory or basal-secretory intermediate cells into ciliated cells. The subsequent differentiation of the SARS-CoV-2-infected progenitors of ciliated cells resulted in a mass of mature ciliated cells infected by SARS-CoV-2. The SARS-CoV-2-infected mature ciliated cells further induced rapid differentiation of the basal cells to restore the injured ciliated epithelial cells resulting in a short-term Additional cell-cell communication mitigated the feed-forward circuit of infection before interferon (IFN) signaling occurred 3dpi of SARS-CoV-2.
By the third day of SARS-CoV-2 infection, the numbers of basal cells replenished due to the partial restoration of the renewal rate of basal cells. These basal cell population dynamics were associated with a short-term increase in factors affecting the differentiation and renewal of basal cells secreted by a newly identified mass of SARS-CoV-2-infected ciliated cells, named novel infected ciliated cells (NICs).
The NIC, independent from other progenitor and mature ciliated cells infected by SARS-CoV-2, has an almost 100% SARS-CoV-2 infection rate, indicating that it emerged from SARS-CoV-2-infected ciliated cells. NIC demonstrated a rapid downregulation of angiotensin-converting enzyme 2 (ACE2) receptors together with suppression of other genes for oxidative stress responses, probably due to SARS-CoV-2 infection. Further, SARS-CoV-2-associated oxidative stress decreased the expression of nuclear factor erythroid 2–related factor 2 (Nrf2) in respiratory pathways.
The factors enhancing the differentiation of the basal and ciliated progenitor cells, including transforming growth factor β (TGFβ), were probably secreted due to the elevated oxidative stress associated with the SARS-CoV-2 infection.
Conclusions
The study findings demonstrated that by leveraging mechanisms that are potentially beneficial in airway epithelial tissue repair, SARS-CoV-2 leads to worsened disease outcomes. The study provided an in-depth understanding of the interaction between SARS-CoV-2 infection and barrier tissues. Moreover, the findings suggested alternative COVID-19 therapeutic strategies directed towards innate immunity by elucidating the vulnerability of innate immunity of the airway epithelial tissues during the initial days of the SARS-CoV-2 infection.
SARS-CoV-2 hijacks the depletion of basal cells followed by their differentiation to maintain the proportion of ciliated cells, which is a potential tissue repair mechanism due to the affinity of SARS-CoV-2 towards dividing progenitor cells rather than stable matured cells. A similar mechanism of viral entry was observed previously in placental infection associated with human cytomegalovirus and Zika virus.
Further, the downregulation of ACE2 receptors and other genes exhibiting oxidative stress responses in SARS-CoV-2-infected cells lead to reduced multiplicity of infection (MOI) in single cells infected with SARS-CoV-2 and increases the viral yield by enhancing the survival of the cells.
The findings indicated that the basis for the lower SARS-CoV-2 infection rate among children was their naturally high epithelial regenerative capacity. As the airway epithelial regenerative capacities decrease with age, this protective mechanism is rare in older individuals.
Previous studies reported a possible reduction in ACE2 expression in humans with age, a phenomenon already demonstrated in animal models and less frequently found in females. Interestingly, the present study suggested the significance of the age-related decrease in expression of Nrf2 in respiratory pathways. It is known that ACE2 acts as a target for the activation of Nrf2. Thus, the elderly and those with alterations in ACE2 expression because of comorbid conditions are associated with a lower SARS-CoV-2 infection rate and higher severity rate.
Overall, the study provided a framework for understanding the gender- and age-related variations of COVID-19 severity. Further, it also demonstrated a potential COVID-19 prophylactic or therapeutic intervention through identifying the systemic vulnerability in SARS-CoV-2 infection.
* Important notice
bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice / health-related behavior, or treated as established information.
Sources 2/ https://www.news-medical.net/news/20220203/Study-describes-the-first-three-days-of-SARS-CoV-2-infection-in-an-ALI-model-of-proximal-airway-epithelium.aspx The mention sources can contact us to remove/changing this article |
What Are The Main Benefits Of Comparing Car Insurance Quotes Online
LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos
to request, modification Contact us at Here or [email protected]