Connect with us

Health

Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus

Association of SLC11A1 polymorphisms with anthropometric and biochemical parameters describing Type 2 Diabetes Mellitus

 


  • Cole, J. B. & Florez, J. C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 16, 377–390 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Diabetes Federation. IDF Diabetes Atlas 9th edn. (International Diabetes Federation, 2023).


    Google Scholar
     

  • Hu, F. B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 34, 1249–1257 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schumann, T. et al. Solute carrier transporters as potential targets for the treatment of metabolic disease. Pharmacol. Rev. 72, 343–379. https://doi.org/10.1124/pr.118.015735 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tinajero, M. G. & Malik, V. S. An update on the epidemiology of Type 2 Diabetes: A global perspective. Endocrinol. Metab. Clin. N. Am. 50, 337–355. https://doi.org/10.1016/j.ecl.2021.05.013 (2021).

    Article 

    Google Scholar
     

  • Malik, V. S., Willet, W. C. & Hu, F. B. Nearly a decade on: Trends, risk factors and policy implications in global obesity. Nat. Rev. Endocrinol. 16, 615–616 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trajanoska, K. et al. Assessment of the genetic and clinical determinants of fracture risk: Genome wide association and mendelian randomisation study. BMJ 362, 1–10 (2018).


    Google Scholar
     

  • Morris, A. P. Progress in defining the genetic contribution to type 2 diabetes susceptibility. Curr. Opin. Genet. Dev. 50, 41–51 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meigs, J. B. The genetic epidemiology of type 2 diabetes: Opportunities for health translation. Curr. Diab.Rep. 19, 1–8 (2019).

    Article 

    Google Scholar
     

  • Fuchsberger, C. et al. (2016).

  • Ahmed, S. A. H., Ansari, S. A., Mensah-Brown, E. P. & Emerald, B. S. The role of DNA methylation in the pathogenesis of Type 2 Diabetes Mellitus. Clin. Epigenet. 12, 1–23 (2020).

    Article 

    Google Scholar
     

  • Hanson, M. A. & Gluckman, P. D. Early developmental conditioning of later health and disease: Physiology or pathophysiology?. Physiol. Rev. 94, 1027–1076. https://doi.org/10.1152/physrev.00029.2013 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Zhang, Y., Sun, K., Meng, Z. & Chen, L. The SLC transporter in nutrient and metabolic sensing, regulation, and drug development. J. Mol. Cell Biol. 11, 1–13. https://doi.org/10.1093/jmcb/mjy052 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, E. C. et al. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol. Pharmacol. 88, 75–83 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer zu Schwabedissen, H. E., Verstuyft, C., Kroemer, H. K., Becquemont, L. & Kim, R. B. Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter: functional characterization, interaction with OCT2 (SLC22A2), and single nucleotide polymorphisms. Am. J. Physiol. Renal Physiol. 298, F997–F1005 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le, J. et al. Restoration of mRNA expression of solute carrier proteins in liver of diet-induced obese mice by metformin. Front. Endocrinol. 12, 720784–720784. https://doi.org/10.3389/fendo.2021.720784 (2021).

    Article 

    Google Scholar
     

  • Cellier, M. F. Developmental control of NRAMP1 (SLC11A1) expression in professional phagocytes. Biology 6, 28 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. H. et al. Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC Med. Genet. 12, 1–11 (2011).

    Article 

    Google Scholar
     

  • Wessling-Resnick, M. Nramp1 and other transporters involved in metal withholding during infection. J. Biol. Chem. 290, 18984–18990. https://doi.org/10.1074/jbc.R115.643973 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forbes, J. R. & Gros, P. Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 102, 1884–1892 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed, H. S. et al. SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in The Sudan. Eur. J. Hum. Genet. 12, 66–74 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brochado, M. J. F., Gatti, M. F. C., Zago, M. A. & Roselino, A. M. Association of the solute carrier family 11 member 1 gene polymorphisms with susceptibility to leprosy in a Brazilian sample. Mem. Inst. Oswaldo Cruz 111, 101–105 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niño-Moreno, P. et al. The role of NRAMP1/SLC11A1 gene variant D543N (1730G/A) in the genetic susceptibility to develop Rheumatoid arthritis in the Mexican Mestizo population. Rev. Invest. Clin. 69, 5–10 (2017).

    PubMed 

    Google Scholar
     

  • Sophie, M. et al. SLC11A1 polymorphisms and host susceptibility to cutaneous leishmaniasis in Pakistan. Parasit. Vectors 10, 1–9 (2017).

    Article 

    Google Scholar
     

  • Ji, J. H. et al. Relationship between heavy metal exposure and type 2 diabetes: A large-scale retrospective cohort study using occupational health examinations. BMJ Open 11, e039541 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shidfar, F., Alborzi, F., Salehi, M. & Nojomi, M. Association of waist circumference, body mass index and conicity index with cardiovascular risk factors in postmenopausal women: cardiovascular topic. Cardiovasc. J. Afr. 23, 442–445 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Mwer, S., Dykes, D. & Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).

    Article 

    Google Scholar
     

  • Yong, Y. & He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15, 97 (2005).

    Article 

    Google Scholar
     

  • Piva, F., Giulietti, M., Nocchi, L. & Principato, G. SpliceAid: A database of RNA target motifs bound by splicing proteins in humans. Bioinformatics 25, 1211–1213 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crooks, G., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, T. D. & Stephens, R. M. Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crooks, G. E. WebLogo (Lawrence Berkeley National Lab (LBNL), 2003).


    Google Scholar
     

  • Li, T. et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of Type 2 Diabetes Mellitus: Present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236. https://doi.org/10.1038/nrendo.2011.183 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Z., Yang, T., Wang, Z., Dong, J. & Liang, C. GRK5 intronic (CA) n polymorphisms associated with type 2 diabetes in Chinese Hainan Island. PLoS ONE 9, e90597 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leiria, L. B. et al. The rs225017 polymorphism in the 3′ UTR of the human DIO2 gene is associated with increased insulin resistance. PLoS ONE 9, e103960 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Virginia, D. M. et al. Single nucleotide polymorphism in the 3’untranslated region of PRKAA2 on cardiometabolic parameters in Type 2 Diabetes Mellitus patients who received metformin. Ther. Clin. Risk Manag. 18, 349 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackwell, J. M. et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 3, 773–784. https://doi.org/10.1046/j.1462-5822.2001.00150.x (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Archer, N. S., Nassif, N. T. & O’Brien, B. A. Genetic variants of SLC11A1 are associated with both autoimmune and infectious diseases: Systematic review and meta-analysis. Genes Immun. 16, 275–283 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donninger, H. et al. Functional analysis of novel SLC11A1 (NRAMP1) promoter variants in susceptibility to HIV-1. J. Med. Genet. 41, e49–e49 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, Y. et al. A genetic variant in SLC6A20 is associated with Type 2 diabetes in white-European and Chinese populations. Diabet. Med. 31, 1350–1356. https://doi.org/10.1111/dme.12528 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J., Wang, J. & Chen, B. SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet. Mol. Res. 11, 1592–1598. https://doi.org/10.4238/2012.May.24.1 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaahl, M. G., Winter, T. A., Warnich, L. & Kotze, M. J. The− 237C→ T promoter polymorphism of the SLC11A1 gene is associated with a protective effect in relation to inflammatory bowel disease in the South African population. Int. J. Colorectal Dis. 21, 402–408 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Zaahl, M. G., Robson, K. J., Warnich, L. & Kotze, M. J. Expression of the SLC11A1 (NRAMP1) 5′-(GT) n repeat: Opposite effect in the presence of− 237C→ T. Blood Cells Mol. Dis. 33, 45–50 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kissler, S. et al. In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat. Genet. 38, 479–483 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. D. et al. Slc11a1 enhances the autoimmune diabetogenic T-cell response by altering processing and presentation of pancreatic islet antigens. Diabetes 58, 156–164 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. H. et al. Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC Med. Genet. 12, 59. https://doi.org/10.1186/1471-2350-12-59 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, K. et al. Promoter polymorphism of SLC11A1 (formerly NRAMP1) confers susceptibility to autoimmune type 1 diabetes mellitus in Japanese. Tissue Antigens 63, 231–236 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paccagnini, D. et al. Linking chronic infection and autoimmune diseases: Mycobacterium avium subspecies paratuberculosis, SLC11A1 polymorphisms and type-1 diabetes mellitus. PLoS ONE 4, e7109 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aenkoe, M.-L. Seminars in Cell & Developmental Biology 11–21 (Elsevier, 2022).


    Google Scholar
     

  • Liu, Q., Fang, L. & Wu, C. Alternative splicing and isoforms: From mechanisms to diseases. Genes 13, 401 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, C.-S. et al. Heterogeneous nuclear ribonucleoprotein F suppresses angiotensinogen gene expression and attenuates hypertension and kidney injury in diabetic mice. Diabetes 61, 2597–2608 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, A. et al. Insulin inhibits Nrf2 gene expression via heterogeneous nuclear ribonucleoprotein F/K in diabetic mice. Endocrinology 158, 903–919 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishida, Y., Aida, K., Kihara, M. & Kobayashi, T. Antibody-validated proteins in inflamed islets of fulminant type 1 diabetes profiled by laser-capture microdissection followed by mass spectrometry. PLoS ONE 9, e107664 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tacke, R. & Manley, J. L. The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J. 14, 3540–3551 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, X. & Zhang, J. Why do hubs tend to be essential in protein networks?. PLoS Genet. 2, e88 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ozbayer, C. et al. The genetic variants of solute carrier family 11 member 2 gene and risk of developing type-2 diabetes. J. Genet. 97, 1407–1412 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, L. et al. SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes. Neuroscience 463, 216–226 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudhahar, V. et al. Akt2 (protein kinase B beta) stabilizes ATP7A, a copper transporter for extracellular superoxide dismutase, in vascular smooth muscle: Novel mechanism to limit endothelial dysfunction in Type 2 Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 38, 529–541 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, K., Ma, O., Wat, N., Chan, L. & Janus, E. β-fibrinogen gene G/A-455 polymorphism in relation to fibrinogen concentrations and ischaemic heart disease in Chinese patients with Type II diabetes. Diabetologia 42, 1250–1253 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, J.-Y., Ryu, M.-H., Go, M.-J., Oh, B.-S. & Cho, Y.-S. Association between single nucleotide polymorphisms of the fibrinogen alpha chain (FGA) gene and Type 2 Diabetes Mellitus in the Korean population. Genomics Inf. 7, 57–64 (2009).

    Article 

    Google Scholar
     

  • Li, R. & Guo, K. Mutation of SLC40A1 gene in newly diagnosed type 2 diabetic patients with iron overload. Chin. J. Diabetes 1, 691–696 (2017).


    Google Scholar
     

  • Vojtková, J. et al. An association between fibrinogen gene polymorphisms and diabetic peripheral neuropathy in young patients with type 1 diabetes. Mol. Biol. Rep. 48, 4397–4404 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, N., Zhou, H., Fan, H. & Yuan, Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 8, 110635 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair, V., Sankaranarayanan, R. & Vasavada, A. R. Deciphering the association of intronic single nucleotide polymorphisms of crystallin gene family with congenital cataract. Indian J. Ophthalmol. 69, 2064 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattick, J. S. Introns: Evolution and function. Curr. Opin. Genet. Dev. 4, 823–831 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jegga, A. G. & Aronow, B. J. Evolutionarily conserved noncoding DNA. eLS (2008).

  • Prakasam, P., Abdul Salam, A. A. & Basheer Ahamed, S. I. The pathogenic effect of SNPs on structure and function of human TLR4 using a computational approach. J. Biomol. Struct. Dyn. 1, 1–14 (2023).

    Article 

    Google Scholar
     

  • Wessel, J. et al. Rare non-coding variation identified by large scale whole genome sequencing reveals unexplained heritability of type 2 diabetes. MedRxiv 2020, 20221812 (2020).


    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-023-33239-3

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]