Connect with us

Health

Lipid metabolism transcriptomics of murine microglia in Alzheimer’s disease and neuroinflammation

Lipid metabolism transcriptomics of murine microglia in Alzheimer’s disease and neuroinflammation

 


  • Gallardo, G. & Holtzman, D. M. Amyloid-beta and Tau at the crossroads of Alzheimer’s disease. Adv. Exp. Med. Biol. 1184, 187–203. https://doi.org/10.1007/978-981-32-9358-8_16 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 17, 157–172. https://doi.org/10.1038/s41582-020-00435-y (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dhillon, S. Aducanumab: First approval. Drugs 81, 1437–1443. https://doi.org/10.1007/s40265-021-01569-z (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoy, S. M. Lecanemab: First approval. Drugs 83, 359–365. https://doi.org/10.1007/s40265-023-01851-2 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reardon, S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature 613, 227–228. https://doi.org/10.1038/d41586-023-00030-3 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, G. C., Emerson, S. & Kesselheim, A. S. Evaluation of aducanumab for Alzheimer disease: Scientific evidence and regulatory review involving efficacy, safety, and futility. JAMA 325, 1717–1718. https://doi.org/10.1001/jama.2021.3854 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, T. S., Ayanian, J. Z., Souza, J. & Landon, B. E. Representativeness of participants eligible to be enrolled in clinical trials of aducanumab for Alzheimer disease compared with medicare beneficiaries with Alzheimer disease and mild cognitive impairment. JAMA 326, 1627–1629. https://doi.org/10.1001/jama.2021.15286 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razay, G., Vreugdenhil, A. & Wilcock, G. The metabolic syndrome and Alzheimer disease. Arch. Neurol. 64, 93–96. https://doi.org/10.1001/archneur.64.1.93 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Chausse, B., Kakimoto, P. A. & Kann, O. Microglia and lipids: How metabolism controls brain innate immunity. Semin. Cell Dev. Biol. 112, 137–144. https://doi.org/10.1016/j.semcdb.2020.08.001 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loving, B. A. & Bruce, K. D. Lipid and lipoprotein metabolism in microglia. Front. Physiol. 11, 393. https://doi.org/10.3389/fphys.2020.00393 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, J. S. & Sampson, E. L. Lipid composition of the normal human brain: Gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montanini, I., Gatti, C., Woelk, H. & Porcellati, S. The influence of polyunsaturated phosphatidylcholine on brain lipid synthesis during aging. Farmaco Sci. 38, 376–382 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Sastry, P. S. Lipids of nervous tissue: Composition and metabolism. Prog. Lipid Res. 24, 69–176. https://doi.org/10.1016/0163-7827(85)90011-6 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjorkhem, I. & Meaney, S. Brain cholesterol: Long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol. 24, 806–815. https://doi.org/10.1161/01.ATV.0000120374.59826.1b (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puglielli, L., Tanzi, R. E. & Kovacs, D. M. Alzheimer’s disease: The cholesterol connection. Nat. Neurosci. 6, 345–351. https://doi.org/10.1038/nn0403-345 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roses, A. D. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu. Rev. Med. 47, 387–400. https://doi.org/10.1146/annurev.med.47.1.387 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dallongeville, J., Lussier-Cacan, S. & Davignon, J. Modulation of plasma triglyceride levels by apoE phenotype: A meta-analysis. J. Lipid Res. 33, 447–454 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carvalho-Wells, A. L., Jackson, K. G., Lockyer, S., Lovegrove, J. A. & Minihane, A. M. APOE genotype influences triglyceride and C-reactive protein responses to altered dietary fat intake in UK adults. Am. J. Clin. Nutr. 96, 1447–1453. https://doi.org/10.3945/ajcn.112.043240 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunk, M. M., Driscoll, I., Alzheimer’s Disease Neuroimaging Initiative. Total cholesterol and APOE-related risk for Alzheimer’s disease in the Alzheimer’s disease neuroimaging initiative. J. Alzheimers Dis. 85, 1519–1528. https://doi.org/10.3233/JAD-215091 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Midlife lipid and glucose levels are associated with Alzheimer’s disease. Alzheimers Dement. https://doi.org/10.1002/alz.12641 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071. https://doi.org/10.1016/j.cell.2015.01.049 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakley, H. et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cotto, K. C. et al. DGIdb 3.0: A redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 46, D1068–D1073. https://doi.org/10.1093/nar/gkx1143 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freshour, S. L. et al. Integration of the drug–gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151. https://doi.org/10.1093/nar/gkaa1084 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skoog, I. et al. 15-year longitudinal study of blood pressure and dementia. Lancet 347, 1141–1145. https://doi.org/10.1016/s0140-6736(96)90608-x (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simons, M. et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann. Neurol. 52, 346–350. https://doi.org/10.1002/ana.10292 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, R. C. et al. Statin use and the risk of Alzheimer’s disease: The MIRAGE study. Alzheimers Dement. 2, 96–103. https://doi.org/10.1016/j.jalz.2006.02.003 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geifman, N., Brinton, R. D., Kennedy, R. E., Schneider, L. S. & Butte, A. J. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer’s disease. Alzheimers Res. Ther. 9, 10. https://doi.org/10.1186/s13195-017-0237-y (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husain, I. et al. Rosuvastatin ameliorates cognitive impairment in rats fed with high-salt and cholesterol diet via inhibiting acetylcholinesterase activity and amyloid beta peptide aggregation. Hum. Exp. Toxicol. 37, 399–411. https://doi.org/10.1177/0960327117705431 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heart Protection Study Collaborative Group. MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: A randomised placebo-controlled trial. Lancet 360, 7–22. https://doi.org/10.1016/S0140-6736(02)09327-3 (2002).

    Article 

    Google Scholar
     

  • Appleton, J. P., Scutt, P., Sprigg, N. & Bath, P. M. Hypercholesterolaemia and vascular dementia. Clin. Sci. 131, 1561–1578. https://doi.org/10.1042/CS20160382 (2017).

    Article 

    Google Scholar
     

  • McGuinness, B., Craig, D., Bullock, R. & Passmore, P. Statins for the prevention of dementia. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003160.pub3 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290. https://doi.org/10.1016/j.cell.2017.05.018 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581. https://doi.org/10.1016/j.immuni.2017.08.008 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustam, Y. H. & Reid, G. E. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 90, 374–397. https://doi.org/10.1021/acs.analchem.7b04836 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daemen, S., van Zandvoort, M., Parekh, S. H. & Hesselink, M. K. C. Microscopy tools for the investigation of intracellular lipid storage and dynamics. Mol. Metab. 5, 153–163. https://doi.org/10.1016/j.molmet.2015.12.005 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372. https://doi.org/10.1038/nrn3880 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thirumangalakudi, L. et al. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J. Neurochem. 106, 475–485. https://doi.org/10.1111/j.1471-4159.2008.05415.x (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abuelezz, S. A. & Hendawy, N. HMGB1/RAGE/TLR4 axis and glutamate as novel targets for PCSK9 inhibitor in high fat cholesterol diet induced cognitive impairment and amyloidosis. Life Sci. 273, 119310. https://doi.org/10.1016/j.lfs.2021.119310 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beutler, B. A. & Cerami, A. Recombinant interleukin 1 suppresses lipoprotein lipase activity in 3T3-L1 cells. J. Immunol. 135, 3969–3971 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doerrler, W., Feingold, K. R. & Grunfeld, C. Cytokines induce catabolic effects in cultured adipocytes by multiple mechanisms. Cytokine 6, 478–484. https://doi.org/10.1016/1043-4666(94)90074-4 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678. https://doi.org/10.1038/nature11729 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269. https://doi.org/10.1038/nm.3804 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shippy, D. C., Wilhelm, C., Viharkumar, P. A., Raife, T. J. & Ulland, T. K. Beta-hydroxybutyrate inhibits inflammasome activation to attenuate Alzheimer’s disease pathology. J. Neuroinflamm. 17, 280. https://doi.org/10.1186/s12974-020-01948-5 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cheret, C. et al. Neurotoxic activation of microglia is promoted by a nox1-dependent NADPH oxidase. J. Neurosci. 28, 12039–12051. https://doi.org/10.1523/JNEUROSCI.3568-08.2008 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57–69. https://doi.org/10.1038/nrn2038 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Ascorbic acid 6-palmitate modulates microglia M1/M2 polarization in lipopolysaccharide-stimulated BV-2 cells via PERK/elF2alpha mediated endoplasmic reticulum stress. BMC Complement Med. Ther. 22, 302. https://doi.org/10.1186/s12906-022-03780-1 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, S., Xing, Y. & Liu, Y. Emerging roles for the ER stress sensor IRE1alpha in metabolic regulation and disease. J. Biol. Chem. 294, 18726–18741. https://doi.org/10.1074/jbc.REV119.007036 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. The protective effects of phoenixin-14 against lipopolysaccharide-induced inflammation and inflammasome activation in astrocytes. Inflamm. Res. 69, 779–787. https://doi.org/10.1007/s00011-020-01355-9 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, K. et al. Cocaine-mediated induction of microglial activation involves the ER stress-TLR2 axis. J. Neuroinflamm. 13, 33. https://doi.org/10.1186/s12974-016-0501-2 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huang, D. & Jiang, Y. MKP1 reduces neuroinflammation via inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J. Cell Physiol. 235, 4316–4325. https://doi.org/10.1002/jcp.29308 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stieber, A., Mourelatos, Z. & Gonatas, N. K. In Alzheimer’s disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am. J. Pathol. 148, 415–426 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, H. Z. et al. The key roles of organelles and ferroptosis in Alzheimer’s disease. J. Neurosci. Res. 100, 1257–1280. https://doi.org/10.1002/jnr.25033 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nordzieke, D. E. & Medrano-Fernandez, I. The plasma membrane: A platform for intra- and intercellular redox signaling. Antioxidants 7, 10168. https://doi.org/10.3390/antiox7110168 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Holtzman, D. M., Herz, J. & Bu, G. Apolipoprotein E and apolipoprotein E receptors: Normal biology and roles in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006312. https://doi.org/10.1101/cshperspect.a006312 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishibashi, S., Herz, J., Maeda, N., Goldstein, J. L. & Brown, M. S. The two-receptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl. Acad. Sci. U.S.A. 91, 4431–4435. https://doi.org/10.1073/pnas.91.10.4431 (1994).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Y. et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron 109, 2413–2426. https://doi.org/10.1016/j.neuron.2021.05.034 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bagyinszky, E., Giau, V. V. & An, S. A. Transcriptomics in Alzheimer’s disease: Aspects and challenges. Int. J. Mol. Sci. 21, 3517. https://doi.org/10.3390/ijms21103517 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blair, J. A. et al. Individual case analysis of postmortem interval time on brain tissue preservation. PLoS ONE 11, e0151615. https://doi.org/10.1371/journal.pone.0151615 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ulland, T. K. et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170, 649–663. https://doi.org/10.1016/j.cell.2017.07.023 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobue, A. et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol. Commun. 9, 1. https://doi.org/10.1186/s40478-020-01099-x (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 11, 6129. https://doi.org/10.1038/s41467-020-19737-2 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142. https://doi.org/10.1038/s41591-019-0695-9 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shippy, D. C., Watters, J. J. & Ulland, T. K. Transcriptional response of murine microglia in Alzheimer’s disease and inflammation. BMC Genom. 23, 183. https://doi.org/10.1186/s12864-022-08417-8 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Righi, M. et al. Monokine production by microglial cell clones. Eur. J. Immunol. 19, 1443–1448. https://doi.org/10.1002/eji.1830190815 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Huang, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. https://doi.org/10.1038/nprot.2008.211 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • da Huang, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13. https://doi.org/10.1093/nar/gkn923 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide datasets. Nucleic Acids Res. 47, D607–D613. https://doi.org/10.1093/nar/gky1131 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169. https://doi.org/10.1186/s12859-015-0611-3 (2015).

    Article 

    Google Scholar
     

  • Heng, T. S., Painter, M. W., Immunological Genome Project Consortium. The Immunological Genome Project: Networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094. https://doi.org/10.1038/ni1008-1091 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-023-41897-6

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]