Connect with us

Health

Vaccination in patients with kidney failure: lessons from COVID-19

Vaccination in patients with kidney failure: lessons from COVID-19

 


  • Kooman, J. P., Kotanko, P., Schols, A. M. W. J., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 10, 732–742 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crépin, T. et al. Uraemia-induced immune senescence and clinical outcomes in chronic kidney disease patients. Nephrol. Dial. Transpl. 35, 624–632 (2020).

    Article 

    Google Scholar
     

  • Kotton, C. N. Immunization after kidney transplantation — what is necessary and what is safe? Nat. Rev. Nephrol. 10, 555–562 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lynn, D. J., Benson, S. C., Lynn, M. A. & Pulendran, B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00554-7 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, P. & Curtis, N. Factors that influence the immune response to vaccination. Clin. Microbiol. Rev. 32, e00084-18 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ma, B. M. et al. Vaccination in patients with chronic kidney disease — review of current recommendations and recent advances. Nephrology 26, 5–11 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Kato, S. et al. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 3, 1526–1533 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Krueger, K. M., Ison, M. G. & Ghossein, C. Practical guide to vaccination in all stages of CKD, including patients treated by dialysis or kidney transplantation. Am. J. Kidney Dis. 75, 417–425 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Uribarri, A. et al. Impact of renal function on admission in COVID-19 patients: an analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID 19) Registry. J. Nephrol. 19, 1–9 (2020).


    Google Scholar
     

  • Kant, S. et al. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol. 21, 1–13 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Anft, M. et al. COVID-19-induced ARDS is associated with decreased frequency of activated memory/effector T cells expressing CD11a++. Mol. Ther. 28, 2691–2702 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thieme, C. J. et al. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell Rep. Med. 1, 100092 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hartzell, S. et al. Evidence of potent humoral immune activity in COVID-19-infected kidney transplant recipients. Am. J. Transplant. 20, 3149–3161 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Candon, S. et al. T cell and antibody responses to SARS-CoV-2: experience from a French transplantation and hemodialysis center during the COVID-19 pandemic. Am. J. Transplant. 21, 854–863 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Quinti, I. et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J. Allergy Clin. Immunol. 146, 211 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soresina, A. et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr. Allergy Immunol. 31, 565–569 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vanholder, R. et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 63, 1934–1943 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cohen, G., Raupachova, J. & Hörl, W. H. The uraemic toxin phenylacetic acid contributes to inflammation by priming polymorphonuclear leucocytes. Nephrol. Dial. Transpl. 28, 421–429 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Yu, M., Kim, Y. J. & Kang, D. H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin. J. Am. Soc. Nephrol. 6, 30–39 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kim, H. Y. et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci. Rep. 7, 3057 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Azevedo, M. L. V. et al. p-Cresyl sulfate affects the oxidative burst, phagocytosis process, and antigen presentation of monocyte-derived macrophages. Toxicol. Lett. 263, 1–5 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Daenen, K. et al. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 34, 975–991 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Duni, A., Liakopoulos, V., Roumeliotis, S., Peschos, D. & Dounousi, E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread. Int. J. Mol. Sci. 20, 3711 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sanlioglu, S. et al. Lipopolysaccharide induces Rac1-dependent reactive oxygen species formation and coordinates tumor necrosis factor-α secretion through IKK regulation of NF-κB. J. Biol. Chem. 276, 30188–30198 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steiger, S., Rossaint, J., Zarbock, A. & Anders, H. J. Secondary immunodeficiency related to kidney disease (SIDKD) — definition, unmet need, and mechanisms. J. Am. Soc. Nephrol. 33, 259–278 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Anders, H. J., Andersen, K. & Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 83, 1010–1016 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lang, C.-L., Wang, M.-H., Chiang, C.-K. & Lu, K.-C. Vitamin D and the immune system from the nephrologist’s viewpoint. ISRN Endocrinol. 2014, 105456 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Adorini, L. & Penna, G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum. Immunol. 70, 345–352 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lemire, J. M., Archer, D. C., Beck, L. & Spiegelberg, H. L. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J. Nutr. 125, 1704S–1708S (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Boonstra, A. et al. 1α,25-Dihydroxyvitamin D3 has a direct effect on naive CD4+ T cells to enhance the development of Th2 cells. J. Immunol. 167, 4974–4980 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jeffery, L. E. et al. 1,25-Dihydroxyvitamin D 3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 183, 5458–5467 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Massry, S. G. & Smogorzewski, M. Dysfunction of polymorphonuclear leukocytes in uremia: role of parathyroid hormone. Kidney Int. 59, 195–196 (2001).

    Article 

    Google Scholar
     

  • Cantarelli, C., Angeletti, A. & Cravedi, P. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am. J. Transplant. 19, 2407–2414 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Libetta, C., Sepe, V. & Canton, A. D. Bio-incompatibility and Th2 polarization during regular dialysis treatment. Int. Rev. Immunol. 29, 608–625 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zanoni, I. et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460, 264–268 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carracedo, J. et al. Cell apoptosis and hemodialysis-induced inflammation. Kidney Int. Suppl. 61, 89–93 (2002).

    Article 

    Google Scholar
     

  • Fukushi, T., Yamamoto, T., Yoshida, M., Fujikura, E. & Miyazaki, M. Enhanced neutrophil apoptosis accompanying myeloperoxidase release during hemodialysis. Sci. Rep. 10, 21747 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kourtzelis, I. et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 116, 631–639 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xiang, F. et al. Decreased peripheral naïve T cell number and its role in predicting cardiovascular and infection events in hemodialysis patients. Front. Immunol. 12, 1–9 (2021).


    Google Scholar
     

  • Naylor, K. et al. The influence of age on T cell generation and TCR diversity. J. Immunol. 174, 7446–7452 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Litjens, N. H. R., Van Druningen, C. J. & Betjes, M. G. H. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin. Immunol. 118, 83–91 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Betjes, M. G. H., Langerak, A. W., Van Der Spek, A., De Wit, E. A. & Litjens, N. H. R. Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int. 80, 208–217 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Betjes, M. G. H. Uremia-associated ageing of the thymus and adaptive immune responses. Toxins 12, 224 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ebert, T. et al. Inflammation and premature ageing in chronic kidney disease. Toxins 12, 227 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cohen, G. Immune Dysfunction in Uremia 2020. Toxins 12, 439 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Meier, P., Dayer, E. & Blanc, E. Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease.13, 204–212 (2002).

  • Stavropoulou, E. et al. Microbiome, immunosenescence, and chronic kidney disease. Front. Med. 8, 1–8 (2021).

    Article 

    Google Scholar
     

  • Akchurin, O. M. & Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 39, 84–92 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mathew, R., Mason, D. & Kennedy, J. S. Vaccination issues in patients with chronic kidney disease. Expert. Rev. Vaccines 13, 285–298 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ishigami, J. & Matsushita, K. Clinical epidemiology of infectious disease among patients with chronic kidney disease. Clin. Exp. Nephrol. 23, 437–447 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Dalrymple, L. S. & Go, A. S. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1487–1493 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lai, C. C. et al. COVID-19 vaccines: concerns beyond protective efficacy and safety. Expert. Rev. Vaccines 20, 1013–1025 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cevik, M., Grubaugh, N. D., Iwasaki, A. & Openshaw, P. COVID-19 vaccines: keeping pace with SARS-CoV-2 variants. Cell 184, 5077–5081 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nance, K. D. & Meier, J. L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci. 7, 748–756 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e15 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lu, S. et al. The immunodominant and neutralization linear epitopes for SARS-CoV-2. Cell Rep. 34, 108666 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Swadling, L. et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature https://doi.org/10.1038/s41586-021-04186-8 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rincon-Arevalo, H. et al. Impaired humoral immunity to SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients and dialysis patients. Sci. Immunol. 6, 1–13 (2021).

    Article 

    Google Scholar
     

  • Leyendeckers, H. et al. Correlation analysis between frequencies of circulating antigen-specific IgG-bearing memory B cells and serum titers of antigen-specific IgG. Eur. J. Immunol. 29, 1406–1417 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Odendahl, M. et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105, 1614–1621 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan, H. Z. et al. Is COVID-19 vaccination unmasking glomerulonephritis? Kidney Int. 100, 467–471 (2021).


    Google Scholar
     

  • Furer, V. et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann. Rheum. Dis. 80, 1330–1338 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boyarsky, B. J. et al. Antibody response to 2-dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients. JAMA 325, 2204–2206 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stumpf, J. et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: a prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. Lancet Reg. Health Eur. https://doi.org/10.1016/j.lanepe.2021.100178 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sattler, A. et al. Impaired humoral and cellular immunity after SARS-CoV-2 BNT162b2 (tozinameran) prime-boost vaccination in kidney transplant recipients. J. Clin. Invest 131, e150175 (2021).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thieme, C. J. et al. The magnitude and functionality of SARS-CoV-2 reactive cellular and humoral immunity in transplant population is similar to the general population despite immunosuppression. Transplantation 105, 2156–2164 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Feng, S. et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 27, 2032–2040 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, J. J. et al. Immunogenicity rates after SARS-CoV-2 vaccination in people with end-stage kidney disease: a systematic review and meta-analysis. JAMA Netw. Open 4, e2131749 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Broseta, J. et al. Humoral and cellular responses to mRNA-1273 and BNT162b2 SARS-CoV-2 vaccines administered to hemodialysis patients. Am. J. Kidney Dis. 78, 571–581 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Midtvedt, K. et al. Low immunization rate in kidney transplant recipients also after dose 2 of the BNT162b2 vaccine: continue to keep your guard up! Transplantation 105, E80–E81 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cucchiari, D. et al. Cellular and humoral response after MRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients. Am. J. Transplant. 21, 2727–2739 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hackstein, H. & Thomson, A. W. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat. Rev. Immunol. 4, 24–34 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taylor, A. L., Watson, C. J. E. & Bradley, J. A. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit. Rev. Oncol. Hematol. 56, 23–46 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Allison, A. C. Mechanisms of action of mycophenolate mofetil. Lupus 14, 2–8 (2005).

    Article 

    Google Scholar
     

  • Haneda, M. et al. Comparative analysis of drug action on B-cell proliferation and differentiation for mycophenolic acid, everolimus, and prednisolone. Transplantation 97, 405–412 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Karnell, J. L. et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J. Immunol. 187, 3603–3612 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rozen-Zvi, B. et al. Antibody response to SARS-CoV-2 mRNA vaccine among kidney transplant recipients: a prospective cohort study. Clin. Microbiol. Infect. J. 27, 1173.e1–1173.e4 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Broen, J. C. A. & van Laar, J. M. Mycophenolate mofetil, azathioprine and tacrolimus: mechanisms in rheumatology. Nat. Rev. Rheumatol. 16, 167–178 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl. Med. 6, 268ra179 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lages, C. S., Lewkowich, I., Sproles, A., Wills-Karp, M. & Chougnet, C. Partial restoration of T cell function in aged mice by in vitro blockade of the PD-1/PD-L1 pathway. Aging Cell 9, 785–798 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gardner, D., Jeffery, L. E. & Sansom, D. M. Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am. J. Transpl. 14, 1985–1991 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Chavarot, N. et al. Poor anti-SARS-CoV-2 humoral and T-cell responses after 2 injections of mRNA vaccine in kidney transplant recipients treated with belatacept. Transplantation 105, E94–E95 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bertrand, D. et al. Antibody and T cell response to SARS-CoV-2 messenger RNA BNT162b2 vaccine in kidney transplant recipients and hemodialysis patients. J. Am. Soc. Nephrol. 32, 2147–2152 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ou, M. T. et al. Immunogenicity and reactogenicity after SARS-CoV-2 mRNA vaccination in kidney transplant recipients taking belatacept. Transplantation 105, 2119–2123 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Terrec, F. et al. Belatacept use after kidney transplantation and its effects on risk of infection and COVID-19 vaccine response. J. Clin. Med. 10, 5159 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Leibler, C. et al. Control of humoral response in renal transplantation by belatacept depends on a direct effect on B cells and impaired T follicular helper-B cell crosstalk. J. Am. Soc. Nephrol. 29, 1049–1062 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, J. et al. Reversing endogenous alloreactive B cell GC responses with anti-CD154 or CTLA-4Ig. Am. J. Transpl. 13, 2280–2292 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Bertrand, D. et al. Opportunistic infections after conversion to belatacept in kidney transplantation. Nephrol. Dial. Transpl. 35, 336–345 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Scharpé, J. et al. Influenza vaccination is efficacious and safe in renal transplant recipients. Am. J. Transpl. 8, 332–337 (2008).

    Article 

    Google Scholar
     

  • Rambal, V. et al. Differential influenza H1N1-specific humoral and cellular response kinetics in kidney transplant patients. Med. Microbiol. Immunol. 203, 35–45 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Birdwell, K. A. et al. Decreased antibody response to influenza vaccination in kidney transplant recipients: a prospective cohort study. Am. J. Kidney Dis. 54, 112–121 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morillo-Huesca, M., Vanti, M. & Chávez, S. A simple in vivo assay for measuring the efficiency of gene length-dependent processes in yeast mRNA biogenesis. FEBS J. 273, 756–769 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jurkiewicz, A. et al. Inhibition of tRNA gene transcription by the immunosuppressant mycophenolic acid. Mol. Cell. Biol. 40, e00294-19 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dieci, G., Fiorino, G., Castelnuovo, M., Teichmann, M. & Pagano, A. The expanding RNA polymerase III transcriptome. Trends Genet. 23, 614–622 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Graczyk, D., Cieśla, M. & Boguta, M. Regulation of tRNA synthesis by the general transcription factors of RNA polymerase III, TFIIIB and TFIIIC, and by the MAF1 protein. Biochim. Biophys. Acta Gene Regul. Mech. 1861, 320–329 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Orioli, A., Praz, V., Lhôte, P. & Hernandez, N. Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest. Genome Res. 26, 624–634 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sans, M. D. & Williams, J. A. Calcineurin is required for translational control of protein synthesis in rat pancreatic acini. Am. J. Physiol. Cell Physiol. 287, C310–C319 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Benotmane, I. et al. In-depth virological assessment of kidney transplant recipients with COVID-19. Am. J. Transplant. 20, 3162–3172 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Favà, A. et al. SARS-CoV-2-specific serological and functional T cell immune responses during acute and early COVID-19 convalescence in solid organ transplant patients. Am. J. Transplant. 21, 2749–2761 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wijtvliet, V. P. W. M. et al. mRNA-1273 vaccine (Moderna): a better option than BNT162b2 (Pfizer) in kidney transplant recipients and dialysis patients? Nephrol. Dial. Transpl. 37, 799–803 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Van Praet, J. et al. Predictors and dynamics of the humoral and cellular immune response to SARS-CoV-2 mRNA vaccines in hemodialysis patients: a multicenter observational study. J. Am. Soc. Nephrol. 32, 3208–3220 (2021).

    Article 

    Google Scholar
     

  • Benotmane, I. et al. Strong antibody response after a first dose of a SARS-CoV-2 mRNA-based vaccine in kidney transplant recipients with a previous history of COVID-19. Am. J. Transplant. 21, 3808–3810 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Grupper, A. et al. Reduced humoral response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus. Am. J. Transplant. 21, 2719–2726 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mehta, R. B. & Silveira, F. P. COVID-19 after two doses of mRNA vaccines in kidney transplant recipients. Am. J. Transplant. https://doi.org/10.1111/ajt.16778 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chavarot, N. et al. Weak antibody response to three doses of mRNA vaccine in kidney transplant recipients treated with belatacept. Am. J. Transplant. https://doi.org/10.1111/ajt.16814 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caillard, S. et al. Occurrence of severe COVID-19 in vaccinated transplant patients. Kidney Int. 100, 457–481 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 185, 1–10 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J., Wang, R., Gilby, N. B. & Wei, G.-W. Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.1c01451 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. A novel neutralizing monoclonal antibody targeting the N-terminal domain of the MERS-CoV spike protein. Emerg. Microbes Infect. 6, 1–7 (2017).


    Google Scholar
     

  • Wang, L. et al. Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on the middle east respiratory syndrome coronavirus spike glycoprotein to avoid neutralization escape. J. Virol. 92, 1–21 (2018).


    Google Scholar
     

  • Wall, E. C. et al. Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet 397, 2331–2333 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Speer, C. et al. Neutralizing antibody response against variants of concern after vaccination of dialysis patients with BNT162b2. Kidney Int. 100, 700–702 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Manley, H. J. et al. SARS-CoV-2 vaccine effectiveness and breakthrough infections in maintenance dialysis patients. Preprint at medRxiv https://doi.org/10.1101/2021.12.20.21268124 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thieme, C. J. et al. Impaired humoral but substantial cellular immune response to variants of concern b1.1.7 and b.1.351 in hemodialysis patients. J. Am. Soc. Nephrol. 32, 2725–2727 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumar, D. et al. Neutralization against Omicron variant in transplant recipients after three doses of mRNA vaccine. Am. J. Transplant. https://doi.org/10.1111/ajt.17020 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stervbo, U. et al. Improved cellular and humoral immunity upon a second BNT162b2 and mRNA-1273 boost in prime-boost vaccination no/low responders with end-stage renal disease. Kidney Int. https://doi.org/10.1016/j.kint.2021.09.015 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarke, A. et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell 185, 847–859.e11 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davidovic, T. et al. Waning humoral response 6 months after SARS-CoV-2 vaccination with the mRNA-BNT162b2 vaccine in hemodialysis patients: time for a boost. Kidney Int. https://doi.org/10.1016/j.kint.2021.10.006 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aslam, S., Adler, E., Mekeel, K. & Little, S. J. Clinical effectiveness of COVID-19 vaccination in solid organ transplant recipients. Transpl. Infect. Dis. 23, 19–21 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Qin, C. X. et al. Risk of breakthrough SARS-CoV-2 infections in adult transplant recipients. Transplantation 105, e265–e266 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bertrand, D. et al. Waning antibody response and cellular immunity 6 months after third dose SARS-Cov-2 mRNA BNT162b2 vaccine in kidney transplant recipients. Am. J. Transplant. https://doi.org/10.1111/ajt.16954 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • ECDC and EMA. Updated joint statement from ECDC and EMA on additional booster doses of COVID-19 vaccines. EMA/635144, (2022).

  • Benotmane, I. et al. Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses. J. Am. Med. Assoc. 326, 1063–1065 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Bertrand, D. et al. Antibody and T-cell response to a third dose of SARS-CoV-2 mRNA BNT162b2 vaccine in kidney transplant recipients. Kidney Int. https://doi.org/10.1016/j.kint.2021.09.014 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charmetant, X. et al. Predictive factors of a viral neutralizing humoral response after a third dose of COVID-19 mRNA vaccine. Am. J. Transplant. https://doi.org/10.1111/ajt.16990 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hall, V. G. et al. Randomized trial of a third dose of mRNA-1273 vaccine in transplant recipients. N. Engl. J. Med. 385, 1244–1246 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Kamar, N. et al. Three doses of an mRNA COVID-19 vaccine in solid-organ transplant recipients. N. Engl. J. Med. 385, 661–662 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Marlet, J. et al. Antibody responses after a third dose of COVID-19 vaccine in kidney transplant recipients and patients treated for chronic lymphocytic leukemia. Vaccines 9, 4–9 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Massa, F. et al. Safety and cross-variant immunogenicity of a three-dose COVID-19 mRNA vaccine regimen in kidney transplant recipients. EBioMedicine 73, 103679 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Masset, C. et al. A third injection of the BNT162b2 mRNA COVID-19 vaccine in kidney transplant recipients improves the humoral immune response. Kidney Int. 100, 1132–1135 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schrezenmeier, E. et al. B and T cell responses after a third dose of SARS-CoV-2 vaccine in kidney transplant recipients. J. Am. Soc. Nephrol. https://doi.org/10.1681/asn.2021070966 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stumpf, J. et al. Cellular and humoral immune responses after three doses of BNT162b2 mRNA SARS-CoV-2 vaccine in kidney transplant. Transplantation 105, 267–269 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Westhoff, T. H. et al. A third vaccine dose substantially improves humoral and cellular SARS-CoV-2 immunity in renal transplant recipients with primary humoral nonresponse. Kidney Int. 100, 1135–1136 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Espi, M. et al. A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney Int. 101, 390–402 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alejo, J. L. et al. Antibody response to a fourth dose of a SARS-CoV-2 vaccine in solid organ transplant recipients: a case series. Transplantation 105, E280–E281 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Benotmane, I. et al. A fourth dose of the mRNA-1273 SARS-CoV-2 vaccine improves serum neutralization against the delta variant in kidney transplant recipients. Kidney Int. 50, 5–8 (2022).


    Google Scholar
     

  • Caillard, S., Thaunat, O., Benotmane, I., Masset, C. & Blancho, G. Antibody response to a fourth messenger RNA COVID-19 vaccine dose in kidney transplant recipients: a case series. Ann. Intern. Med. 175, 455–456 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Cinkilic, O. et al. Inferior humoral and sustained cellular immunity against wild-type and omicron variant of concern in hemodialysis patients immunized with 3 SARS-CoV-2 vaccine doses compared with 4 doses. Kidney Int. https://doi.org/10.1016/j.kint.2022.03.005 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamar, N. et al. Assessment of 4 doses of SARS-CoV-2 messenger RNA-based vaccine in recipients of a solid organ transplant. JAMA Netw. Open 4, e2136030 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Masset, C. et al. A fourth SARS-CoV-2 mRNA vaccine in strictly seronegative kidney transplant recipients. Kidney Int. 101, 825–826 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Osmanodja, B. et al. Serological response to three, four and five doses of SARS-CoV-2 vaccine in kidney transplant recipients. J. Clin. Med. 11, 2565 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roch, T. et al. A vector-based vaccine dose after 3 doses of mRNA-based COVID-19 vaccination does not substantially improve humoral SARS-CoV-2 immunity in renal transplant recipients. Kidney Int. Rep. 7, 932–934 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schrezenmeier, E. et al. Temporary antimetabolite treatment hold boosts SARS-CoV-2 vaccination-specific humoral and cellular immunity in kidney transplant recipients. JCI Insight 7, e157836 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Karaba, A. H. et al. A third dose of SARS-CoV-2 vaccine increases neutralizing antibodies against variants of concern in solid organ transplant recipients. Am. J. Transplant. 22, 1253–1260 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Del Bello, A. et al. Efficiency of a boost with a third dose of anti-SARS-CoV-2 messenger RNA-based vaccines in solid organ transplant recipients. Am. J. Transplant. https://doi.org/10.1111/ajt.16775 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Bello, A. et al. Acute rejection after anti-SARS-CoV-2 mRNA vaccination in a patient who underwent a kidney transplant. Kidney Int. 100, 238–239 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Werbel, W. A. et al. Safety and immunogenicity of a third dose of SARS-CoV-2 vaccine in solid organ transplant recipients: a case series. Ann. Intern. Med. 174, 1330–1332 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Duchini, A., Goss, J. A., Karpen, S. & Pockros, P. J. Vaccinations for adult solid-organ transplant recipients: current recommendations and protocols. Clin. Microbiol. Rev. 16, 357–364 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Danziger-Isakov, L. & Kumar, D. Vaccination of solid organ transplant candidates and recipients: guidelines from the American Society of Transplantation Infectious Diseases community of practice. Clin. Transplant. 33, 1–10 (2019).

    Article 

    Google Scholar
     

  • Chong, P. P., Handler, L. & Weber, D. J. A systematic review of safety and immunogenicity of influenza vaccination strategies in solid organ transplant recipients. Clin. Infect. Dis. 66, 1802–1811 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cordero, E. et al. Two doses of inactivated influenza vaccine improve immune response in solid organ transplant recipients: results of TRANSGRIPE 1-2, a randomized controlled clinical trial. Clin. Infect. Dis. 64, 829–838 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pascual, J. et al. Three-year observational follow-up of a multicenter, randomized trial on tacrolimus-based therapy with withdrawal of steroids or mycophenolate mofetil after renal transplant. Transplantation 82, 55–61 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sullivan, K. M. et al. Immunomodulatory and antimicrobial efficacy of intravenous immunoglobulin in bone marrow transplantation. N. Engl. J. Med. 323, 1120–1123 (1990).

    Article 

    Google Scholar
     

  • Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miskulin, D. C. et al. High-dose seasonal influenza vaccine in patients undergoing dialysis. Clin. J. Am. Soc. Nephrol. 13, 1693–1702 (2018).

    Article 

    Google Scholar
     

  • Haddadin, Z. et al. Alternative strategies of posttransplant influenza vaccination in adult solid organ transplant recipients. Am. J. Transplant. 21, 938–949 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Kosmadakis, G., Albaret, J., Correia, E. D. C., Somda, F. & Aguilera, D. Vaccination practices in dialysis patients: a narrative review. Semin. Dial. 31, 507–518 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Babu, T. M. & Kotton, C. N. Immunizations in chronic kidney disease and kidney transplantation. Curr. Treat. Options Infect. Dis. 13, 47–65 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Noh, J. Y. et al. Immunogenicity of trivalent influenza vaccines in patients with chronic kidney disease undergoing hemodialysis: MF59-adjuvanted versus non-adjuvanted vaccines. Hum. Vaccines Immunother. 12, 2902–2908 (2016).

    Article 

    Google Scholar
     

  • Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morais, P., Adachi, H. & Yu, Y. T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 1–9 (2021).

    Article 

    Google Scholar
     

  • Barraclough, K. A. et al. Intradermal versus intramuscular hepatitis B vaccination in hemodialysis patients: a prospective open-label randomized controlled trial in nonresponders to primary vaccination. Am. J. Kidney Dis. 54, 95–103 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Yousaf, F., Gandham, S., Galler, M., Spinowitz, B. & Charytan, C. Systematic review of the efficacy and safety of intradermal versus intramuscular hepatitis B vaccination in end-stage renal disease population unresponsive to primary vaccination series. Ren. Fail. 37, 1080–1088 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wilhelm, A. et al. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. EBioMedicine 82, 104158 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Paniskaki, K. et al. Immune response in moderate to critical breakthrough COVID-19 infection after mRNA vaccination. Front. Immunol. 13, 1–11 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bensouna, I. et al. SARS-CoV-2 antibody response after a third dose of the BNT162b2 vaccine in patients receiving maintenance hemodialysis or peritoneal dialysis. Am. J. Kidney Dis. https://doi.org/10.1053/j.ajkd.2021.08.005 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekervel, M. et al. Humoral response to a third injection of BNT162b2 vaccine in patients on maintenance haemodialysis. Clin. Kidney J. https://doi.org/10.1093/ckj/sfab152 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ducloux, D., Colladant, M., Chabannes, M., Yannaraki, M. & Courivaud, C. Humoral response after 3 doses of the BNT162b2 mRNA COVID-19 vaccine in patients on hemodialysis. Kidney Int. 100, 702–704 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Longlune, N. et al. High immunogenicity of a messenger RNA-based vaccine against SARS-CoV-2 in chronic dialysis patients. Nephrol. Dial. Transpl. 36, 1704–1709 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Robert, T. et al. Humoral response after SARS-COV2 vaccination in patient undergoing maintenance hemodialysis: loss of immunity, third dose and non-responders. Nephrol. Dial. Transpl. https://doi.org/10.1093/ndt/gfab299 (2021).

    Article 

    Google Scholar
     

  • Anand, S. et al. Antibody response to COVID-19 vaccination in patients receiving dialysis. J. Am. Soc. Nephrol. 32, 2435–2438 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bassi, J. et al. Poor neutralization and rapid decay of antibodies to SARS-CoV-2 variants in vaccinated dialysis patients. PLoS One 17, e0263328 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Billany, R. E. et al. Seroprevalence of antibody to S1 spike protein following vaccination against COVID-19 in patients receiving hemodialysis: a call to arms. Kidney Int. 99, 1492–1494 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brunelli, A. S. M. et al. Comparative effectiveness of BNT162b2 versus Ad26.COV2.S for the prevention of COVID-19 among dialysis patients. Preprint at medRxiv https://doi.org/10.1101/2021.10.21.21265339 (2021).

    Article 

    Google Scholar
     

  • Dębska-Ślizień, A. et al. Predictors of humoral response to mRNA COVID19 vaccines in kidney transplant recipients: a longitudinal study — the COViNEPH project. Vaccines 9, 1165 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Garcia, P. et al. COVID19 vaccine type and humoral immune response in patients receiving dialysis. J. Am. Soc. Nephrol. https://doi.org/10.1681/asn.2021070936 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, C. M. et al. Seroresponse to SARS-CoV-2 vaccines among maintenance dialysis patients. Am. J. Kidney Dis. https://doi.org/10.1053/j.ajkd.2021.10.002 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husain, S. A. et al. Postvaccine anti-SARS-CoV-2 spike protein antibody development in kidney transplant recipients. Kidney Int. Rep. 6, 1699–1700 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kaiser, R. A., Haller, M. C., Apfalter, P., Kerschner, H. & Cejka, D. Comparison of BNT162b2 (Pfizer–BioNtech) and mRNA-1273 (Moderna) SARS-CoV-2 mRNA vaccine immunogenicity in dialysis patients. Kidney Int. 100, 697–698 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lacson, E. et al. Immunogenicity of SARS-CoV-2 vaccine in dialysis. J. Am. Soc. Nephrol. 32, 2735–2742 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mulhern, J. G. et al. Humoral response to mRNA versus an adenovirus vector-based SARS-CoV-2 vaccine in dialysis patients. Clin. J. Am. Soc. Nephrol. https://doi.org/10.2215/cjn.06450521 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Prendecki, M. et al. Comparison of humoral and cellular responses in kidney transplant recipients receiving BNT162b2 and ChAdOx1 SARS-CoV-2 vaccines. Preprint at medRxiv https://doi.org/10.1101/2021.07.09.21260192 (2021).

    Article 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41581-022-00617-5

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]