Connect with us

Health

Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study

Intestinal microbiota links to allograft stability after lung transplantation: a prospective cohort study

 


  • Leard, L. E. et al. Consensus document for the selection of lung transplant candidates: an update from the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 40, 1349–1379 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swaminathan, A. C., Todd, J. L. & Palmer, S. M. Advances in human lung transplantation. Annu. Rev. Med. 72, 135–149 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bos, S., Vos, R., Van Raemdonck, D. E. & Verleden, G. M. Survival in adult lung transplantation: where are we in 2020? Curr. Opin. Organ Transplant. 25, 268–273 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chambers, D. C. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult lung and heart-lung transplantation Report-2019; focus theme: donor and recipient size match. J. Heart Lung Transplant. 38, 1042–1055 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verleden, G. M. et al. Chronic lung allograft dysfunction: definition, diagnostic criteria, and approaches to treatment-a consensus report from the Pulmonary Council of the ISHLT. J. Heart Lung Transplant. 38, 493–503 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tague, L. K. et al. Lung transplant outcomes are influenced by severity of neutropenia and granulocyte colony-stimulating factor treatment. Am. J. Transplant. 20, 250–261 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halloran, K. et al. Molecular T-cell‒mediated rejection in transbronchial and mucosal lung transplant biopsies is associated with future risk of graft loss. J. Heart Lung Transplant. 39, 1327–1337 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Burguete, S. R., Maselli, D. J., Fernandez, J. F. & Levine, S. M. Lung transplant infection. Respirology 18, 22–38 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Whiteside, S. A., McGinniss, J. E. & Collman, R. G. The lung microbiome: progress and promise. J. Clin. Investig. 131, e150473 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budden, K. F. et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med. 7, 907–920 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Gabarre, P. et al. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: bidirectional interactions with clinical consequences. Am. J. Transplant. 22, 1014–1030 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swarte, J. C. et al. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci. Transl. Med. 14, eabn7566 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Y. M. et al. The composition of the microbiota modulates allograft rejection. J. Clin. Investig. 126, 2736–2744 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McIntosh, C. M., Chen, L., Shaiber, A., Eren, A. M. & Alegre, M. L. Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6, 96 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watzenbock, M. L. et al. Multi-omics profiling predicts allograft function after lung transplantation. Eur. Respir. J. 59, 2003292 (2021).

    Article 

    Google Scholar
     

  • Combs, M. P. et al. Lung microbiota predict chronic rejection in healthy lung transplant recipients: a prospective cohort study. Lancet Respir. Med. 9, 601–612 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGinniss, J. E. et al. The lung microbiome in lung transplantation. J. Heart Lung Transplant. 40, 733–744 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barcik, W., Boutin, R. C. T., Sokolowska, M. & Finlay, B. B. The role of lung and gut microbiota in the pathology of asthma. Immunity 52, 241–255 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Q. et al. Gut microbiota can impact chronic murine lung allograft rejection. Am. J. Respir. Cell Mol. Biol. 60, 131–134 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zafar, H. & Saier, M. H. Jr Gut Bacteroides species in health and disease. Gut Microbes 13, 1–20 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, D. et al. Angiogenin maintains gut microbe homeostasis by balancing α-Proteobacteria and Lachnospiraceae. Gut 70, 666–676 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fabersani, E. et al. Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice. Sci. Rep. 11, 11788 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, P. et al. Mannose metabolism normalizes gut homeostasis by blocking the TNF-α-mediated proinflammatory circuit. Cell. Mol. Immunol. 20, 119–130 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meloni, F. et al. Bronchoalveolar lavage cytokine profile in a cohort of lung transplant recipients: a predictive role of interleukin-12 with respect to onset of bronchiolitis obliterans syndrome. J. Heart Lung Transplant. 23, 1053–1060 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. IL-1β-dependent extravasation of preexisting lung-restricted autoantibodies during lung transplantation activates complement and mediates primary graft dysfunction. J. Clin. Investig. 132, e15975 (2022).

    Article 

    Google Scholar
     

  • Nadeem, A. et al. Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species. Clin. Exp. Immunol. 191, 279–287 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Abscisic acid inhibited reactive oxygen species-mediated endoplasmic reticulum stress by regulating the PPAR-γ signaling pathway in ARDS mice. Phytother. Res. 35, 7027–7038 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Budden, K. F. et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15, 55–63 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haak, B. W. et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood 131, 2978–2986 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato, K. et al. Longitudinal analysis of the intestinal microbiota in liver transplantation. Transplant. Direct 3, e144 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, P. L. et al. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am. J. Transplant. 12, 753–762 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickson, R. P. et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat. Microbiol. 1, 16113 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panzer, A. R. et al. Lung microbiota is related to smoking status and to development of acute respiratory distress syndrome in critically ill trauma patients. Am. J. Respir. Crit. Care Med. 197, 621–631 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szychowiak, P., Villageois-Tran, K., Patrier, J., Timsit, J. F. & Ruppé, É. The role of the microbiota in the management of intensive care patients. Ann. Intensive Care 12, 3 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, R. P., Hopkins, R. J. & Marsland, B. The gut-liver-lung axis. modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 54, 161–169 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickson, R. P. et al. Lung microbiota predict clinical outcomes in critically ill patients. Am. J. Respir. Crit. Care Med. 201, 555–563 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luyt, C. E. et al. Ventilator-associated pneumonia in patients with SARS-CoV-2-associated acute respiratory distress syndrome requiring ECMO: a retrospective cohort study. Ann. Intensive Care 10, 158 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, M. B. et al. Comparison of donor-derived cell-free DNA between single versus double lung transplant recipients. Am. J. Transplant. 22, 2451–2457 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. et al. Role of circulating MicroRNAs in the immunopathogenesis of rejection after pediatric lung transplantation. Transplantation 101, 2461–2468 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, S. et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transplant. 24, 1710–1720 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuntal, B. K., Chandrakar, P., Sadhu, S. & Mande, S. S. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 13, 442–454 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navarro-Reig, M., Jaumot, J., García-Reiriz, A. & Tauler, R. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies. Anal. Bioanal. Chem. 407, 8835–8847 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, J. & Wishart, D. S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 6, 743–760 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bac, J., Mirkes, E. M., Gorban, A. N., Tyukin, I. & Zinovyev, A. Scikit-Dimension: a Python package for intrinsic dimension estimation. Entropy 23, 1368 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41392-023-01515-3

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]