Connect with us

Health

Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications

Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications

 


  • Tregoning, J. S., Flight, K. E., Higham, S. L., Wang, Z. & Pierce, B. F. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 21, 626–636 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Files, J. K. et al. Duration of post-COVID-19 symptoms is associated with sustained SARS-CoV-2-specific immune responses. JCI Insight 6, e151544 (2021).

    PubMed Central 

    Google Scholar
     

  • Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, T. et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 70, 276–284 (2020).

    PubMed 

    Google Scholar
     

  • Xiao, F. et al. Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerg. Infect. Dis. 26, 1920 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natarajan, A. et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 3, 371–387 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zollner, A. et al. Post-acute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. Gastroenterology 163, 495–506 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheung, K. S. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology 159, 81–95 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Mao, R. et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 5, 667–678 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y. et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 69, 1143–1144 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolter, M. et al. Leveraging diet to engineer the gut microbiome. Nat. Rev. Gastroenterol. Hepatol. 18, 885–902 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Groves, H. T., Higham, S. L., Moffatt, M. F., Cox, M. J. & Tregoning, J. S. Respiratory viral infection alters the gut microbiota by inducing inappetence. mBio 11, e03236-19 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. et al. The cross-talk between gut microbiota and lungs in common lung diseases. Front. Microbiol. 11, 301 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z. et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med. 20, 24 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anand, S. & Mande, S. S. Diet, microbiota and gut-lung connection. Front. Microbiol. 9, 2147 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parrot, T. et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci. Immunol. 5, eabe1670 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legoux, F., Salou, M. & Lantz, O. MAIT cell development and functions: the microbial connection. Immunity 53, 710–723 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, T. et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487, 477–481 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viana, S. D., Nunes, S. & Reis, F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities–role of gut microbiota dysbiosis. Ageing Res. Rev. 62, 101123 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaibani, P. et al. The gut microbiota of critically ill patients with COVID-19. Front. Cell. Infect. Microbiol. 11, 670424 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, S. et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin. Infect. Dis. 71, 2669–2678 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ren, Z. et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut 70, 1253–1265 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Xu, R. et al. Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun. Biol. 4, 240 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizutani, T. et al. Correlation analysis between gut microbiota alterations and the cytokine response in patients with coronavirus disease during hospitalization. Microbiol. Spectr. 10, e0168921 (2022).

    PubMed 

    Google Scholar
     

  • Rafiqul Islam, S. et al. Dysbiosis of oral and gut microbiomes in SARS-CoV-2 infected patients in Bangladesh: elucidating the role of opportunistic gut microbes. Front. Med. 9, 163 (2022).


    Google Scholar
     

  • Reinold, J. et al. A pro-inflammatory gut microbiome characterizes SARS-CoV-2 infected patients and a reduction in the connectivity of an anti-inflammatory bacterial network associates with severe COVID-19. Front. Cell. Infect. Microbiol. 11, 1154 (2021).


    Google Scholar
     

  • Tang, L. et al. Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering 6, 1178–1184 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tao, W. et al. Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Med. Microecol. 5, 100023 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes 7, 61 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeoh, Y. K. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70, 698–706 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Microbiome profiling using shotgun metagenomic sequencing identified unique microorganisms in COVID-19 patients with altered gut microbiota. Front. Microbiol. 12, 712081 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, T. et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology 159, 944–955.e8 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolte, E. E., Moorshead, D. & Aagaard, K. M. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med. 14, 4 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Steenhuijsen Piters, W. A., Binkowska, J. & Bogaert, D. Early life microbiota and respiratory tract infections. Cell Host Microbe 28, 223–232 (2020).

    PubMed 

    Google Scholar
     

  • Renz, H. & Skevaki, C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat. Rev. Immunol. 21, 177–191 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X.-S. et al. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 29, 1249–1265.e9 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar, A., Yoo, J. Y., Valeria Ozorio Dutra, S., Morgan, K. H. & Groer, M. The association between early-life gut microbiota and long-term health and diseases. J. Clin. Med. 10, 459 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, R. et al. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19. J. Genet. Genomics 48, 803–814 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nashed, L. et al. Gut microbiota changes are detected in asymptomatic very young children with SARS-CoV-2 infection. Gut https://doi.org/10.1136/gutjnl-2021-326599 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, L. et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect. Dis. 20, e276–e288 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suskun, C. et al. Intestinal microbiota composition of children with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and multisystem inflammatory syndrome (MIS-C). Eur. J. Pediatr. 181, 3175–3191 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, L. et al. Gut mycobiota alterations in patients with COVID-19 and H1N1 infections and their associations with clinical features. Commun. Biol. 4, 480 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, T. et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterology 159, 1302–1310.e5 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Roudbary, M. et al. Overview on the prevalence of fungal infections, immune response, and microbiome role in COVID-19 patients. J. Fungi 7, 720 (2021).

    CAS 

    Google Scholar
     

  • Arastehfar, A. et al. COVID-19-associated candidiasis (CAC): an underestimated complication in the absence of immunological predispositions? J. Fungi 6, 211 (2020).

    CAS 

    Google Scholar
     

  • Zuo, T. et al. Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity. Microbiome 9, 91 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. Integrated gut virome and bacteriome dynamics in COVID-19 patients. Gut Microbes 13, 1887722 (2021).

    PubMed Central 

    Google Scholar
     

  • Matheson, N. J. & Lehner, P. J. How does SARS-CoV-2 cause COVID-19? Science 369, 510–511 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Katz-Agranov, N. & Zandman-Goddard, G. Autoimmunity and COVID-19–the microbiotal connection. Autoimmun. Rev. 20, 102865 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vignesh, R. et al. Could perturbation of gut microbiota possibly exacerbate the severity of COVID-19 via cytokine storm? Front. Immunol. 11, 607734 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad, R. et al. Plasma microbiome in COVID-19 subjects: an indicator of gut barrier defects and dysbiosis. Preprint at bioRxiv https://doi.org/10.1101/2021.04.06.438634 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Effenberger, M. et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut 69, 1543–1544 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Giron, L. B. et al. Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front. Immunol. 12, 686240 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chhibber-Goel, J., Gopinathan, S. & Sharma, A. Interplay between severities of COVID-19 and the gut microbiome: implications of bacterial co-infections? Gut Pathog. 13, 14 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langford, B. J. et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin. Microbiol. Infect. 26, 1622–1629 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saade, A. et al. Infectious events in patients with severe COVID-19: results of a cohort of patients with high prevalence of underlying immune defect. Ann. Intensive Care 11, 83 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Vidal, C. et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin. Microbiol. Infect. 27, 83–88 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreira-Rosário, A. et al. Gut microbiota diversity and C-reactive protein are predictors of disease severity in COVID-19 patients. Front. Microbiol. 12, 1820 (2021).


    Google Scholar
     

  • Liu, Y. et al. Distinct metagenomic signatures in the SARS-CoV-2 infection. Front. Cell. Infect. Microbiol. 11, 1019 (2021).

    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Gut microbiota dysbiosis correlates with abnormal immune response in moderate COVID-19 patients with fever. J. Inflamm. Res. 14, 2619 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodin, P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 27, 28–33 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, N. et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 27, 892–903 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soffritti, I. et al. Oral microbiome dysbiosis is associated with symptoms severity and local immune/inflammatory response in COVID-19 patients: a cross-sectional study. Front. Microbiol. 12, 687513 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castilhos, J. et al. Severe dysbiosis and specific Haemophilus and Neisseria signatures as hallmarks of the oropharyngeal microbiome in critically ill COVID-19 patients. Clin. Infect. Dis. 75, e1063–e1071 (2021).


    Google Scholar
     

  • Miller, E. H. et al. Oral microbiome alterations and SARS-CoV-2 saliva viral load in patients with COVID-19. Microbiol. Spectr. 9, e0005521 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Ma, S. et al. Metagenomic analysis reveals oropharyngeal microbiota alterations in patients with COVID-19. Signal. Transduct. Target. Ther. 6, 191 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newsome, R. C. et al. The gut microbiome of COVID-19 recovered patients returns to uninfected status in a minority-dominated United States cohort. Gut Microbes 13, 1926840 (2021).

    PubMed Central 

    Google Scholar
     

  • Nasserie, T., Hittle, M. & Goodman, S. N. Assessment of the frequency and variety of persistent symptoms among patients with COVID-19: a systematic review. JAMA Netw. Open 4, e2111417 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71, 544–552 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Evans, R. A. et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir. Med. 9, 1275–1287 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 28, 911–923 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Y. Y., Annamalai, C. & Rao, S. S. Post-infectious irritable bowel syndrome. Curr. Gastroenterol. Rep. 19, 56 (2017).

    PubMed 

    Google Scholar
     

  • Holtmann, G. J., Ford, A. C. & Talley, N. J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 1, 133–146 (2016).

    PubMed 

    Google Scholar
     

  • Austhof, E. et al. Persisting gastrointestinal symptoms and post-infectious irritable bowel syndrome following SARS-CoV-2 infection: results from the Arizona CoVHORT. Epidemiol. Infect. 150, e136 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Ghoshal, U. C. et al. Post‐infection functional gastrointestinal disorders following coronavirus disease‐19: a case–control study. J. Gastroenterol. Hepatol. 37, 489–498 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends Food Sci. Technol. 108, 187–196 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut 71, 222–225 (2022).

    PubMed 

    Google Scholar
     

  • Vestad, B. et al. Respiratory dysfunction three months after severe COVID‐19 is associated with gut microbiota alterations. J. Intern. Med. 291, 801–812 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, Q., Lau, R. I., Liu, Q., Chan, F. K. L. & Ng, S. C. Post-acute COVID-19 syndrome and gut dysbiosis linger beyond 1 year after SARS-CoV-2 clearance. Gut https://doi.org/10.1136/gutjnl-2022-328319 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, G. Y. et al. Characterization of oral and gut microbiome and plasma metabolomics in COVID-19 patients after 1-year follow-up. Mil. Med. Res. 9, 32 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cervia, C. et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nat. Commun. 13, 446 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marx, V. Scientists set out to connect the dots on long COVID. Nat. Methods 18, 449–453 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y., Zhang, J., Zhang, D., Ma, W.-L. & Wang, X. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J. Microbiol. 59, 941–948 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jalanka-Tuovinen, J. et al. Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63, 1737–1745 (2014).

    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int. J. Infect. Dis. 96, 19–24 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koester, S. T., Li, N., Lachance, D. M., Morella, N. M. & Dey, N. Variability in digestive and respiratory tract Ace2 expression is associated with the microbiome. PLoS ONE 16, e0248730 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirayama, M. et al. Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PLoS ONE 16, e0260451 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory organisms. Cell 168, 928–943.e11 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijay, A. & Valdes, A. M. Role of the gut microbiome in chronic diseases: a narrative review. Eur. J. Clin. Nutr. 76, 489–501 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).

    PubMed 

    Google Scholar
     

  • Li, Y. et al. Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID‐19/SARS‐CoV‐2. J. Cell. Mol. Med. 24, 9478–9482 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gracia-Ramos, A. E. Is the ACE2 overexpression a risk factor for COVID-19 infection? Arch. Med. Res. 51, 345–346 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martino, C. et al. Bacterial modification of the host glycosaminoglycan heparan sulfate modulates SARS-CoV-2 infectivity. Preprint at bioRxiv https://doi.org/10.1101/2020.08.17.238444 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kircheis, R. et al. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front. Immunol. 11, 3446 (2020).


    Google Scholar
     

  • Guo, Y. et al. SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci. Bull. 66, 783–793 (2021).

    CAS 

    Google Scholar
     

  • Cerf-Bensussan, N. & Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes? Nat. Rev. Immunol. 10, 735–744 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecarpentier, Y. & Vallée, A. The key role of the level of ACE2 gene expression in SARS-CoV-2 infection. Aging 13, 14552 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brogna, C. et al. Could SARS-CoV-2 have bacteriophage behavior or induce the activity of other bacteriophages? Vaccines 10, 708 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seibert, B. et al. Mild and severe SARS-CoV-2 infection induces respiratory and intestinal microbiome changes in the K18-hACE2 transgenic mouse model. Microbiol. Spectr. 9, e0053621 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Sokol, H. et al. SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota. Gut Microbes 13, 1893113 (2021).

    PubMed Central 

    Google Scholar
     

  • Sencio, V. et al. Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes 14, 2018900 (2022).

    PubMed 

    Google Scholar
     

  • Pascoal, L. B. et al. Microbiota-derived short-chain fatty acids do not interfere with SARS-CoV-2 infection of human colonic samples. Gut Microbes 13, 1874740 (2021).

    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. SARS‐CoV‐2 triggered oxidative stress and abnormal energy metabolism in gut microbiota. MedComm 3, 41–56 (2022).


    Google Scholar
     

  • He, F. et al. Fecal multi-omics analysis reveals diverse molecular alterations of gut ecosystem in COVID-19 patients. Anal. Chim. Acta 1180, 338881 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, L. et al. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal. Chim. Acta 1152, 338267 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Bataineh, M. T. et al. Gut microbiota interplay with COVID-19 reveals links to host lipid metabolism among Middle Eastern populations. Front. Microbiol. 12, 761067 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Prolonged impairment of short-chain fatty acid and L-isoleucine biosynthesis in gut microbiome in patients with COVID-19. Gastroenterology 162, 548–561.e4 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 11450 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y. et al. The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit. Rev. Food Sci. Nutr. 62, 1–12 (2020).

    PubMed 

    Google Scholar
     

  • Lionetto, L. et al. Increased kynurenine-to-tryptophan ratio in the serum of patients infected with SARS-CoV2: an observational cohort study. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166042 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Barberis, E. et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARS-CoV-2. Int. J. Mol. Sci. 21, 8623 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Robertson, J. et al. Serum neopterin levels in relation to mild and severe COVID-19. BMC Infect. Dis. 20, 942 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eroğlu, İ., Eroğlu, B. Ç. & Güven, G. S. Altered tryptophan absorption and metabolism could underlie long-term symptoms in survivors of coronavirus disease 2019 (COVID-19). Nutrition 90, 111308 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dagenais-Lussier, X. et al. Latest developments in tryptophan metabolism: understanding its role in B cell immunity. Cytokine Growth Factor Rev. 59, 111–117 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Cervenka, I., Agudelo, L. Z. & Ruas, J. L. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357, eaaf9794 (2017).

    PubMed 

    Google Scholar
     

  • Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front. Cell. Infect. Microbiol. 8, 13 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonner, J. K. et al. Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology. Nat. Commun. 10, 4877 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72.e15 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohrhofer, J., Zwirzitz, B., Selberherr, E. & Untersmayr, E. The impact of dietary sphingolipids on intestinal microbiota and gastrointestinal immune homeostasis. Front. Immunol. 12, 635704 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, E. M. et al. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and syMbiosis. Cell Host Microbe 25, 668–680.e7 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kue, C. S. et al. C6-ceramide in combination with transforming growth factor-β enhances Treg cell differentiation and stable FoxP3 expression in vitro and in vivo. Immunobiology 218, 952–959 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Gericke, B., Amiri, M. & Naim, H. Y. The multiple roles of sucrase-isomaltase in the intestinal physiology. Mol. Cell. Pediatr. 3, 2 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deb, C. et al. Sucrase-isomaltase gene variants in patients with abnormal sucrase activity and functional gastrointestinal disorders. J. Pediatr. Gastroenterol. Nutr. 72, 29–35 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kalantar-Zadeh, K., Berean, K. J., Burgell, R. E., Muir, J. G. & Gibson, P. R. Intestinal gases: influence on gut disorders and the role of dietary manipulations. Nat. Rev. Gastroenterol. Hepatol. 16, 733–747 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Nasreen, S. et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nat. Microbiol. 7, 379–385 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, N. et al. Effectiveness of COVID-19 booster vaccines against covid-19 related symptoms, hospitalisation and death in England. Nat. Med. 28, 831–837 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynn, D. J., Benson, S. C., Lynn, M. A. & Pulendran, B. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat. Rev. Immunol. 22, 33–46 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulendran, B., S Arunachalam, P. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, J. Z. et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity 41, 478–492 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. et al. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat. Med. 22, 524–530 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M., Qie, Y., Park, J. & Kim, C. H. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe 20, 202–214 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, S. C. et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut 71, 1106–1116 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, J. L. et al. The gut microbiota and metabolome is associated with diminished COVID-19 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients. Lancet Gastroenterol. Hepatol. 7, 342–352 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uehara, O. et al. Alterations in the oral microbiome of individuals with a healthy oral environment following COVID-19 vaccination. BMC Oral Health 22, 50 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine-Tiefenbrun, M. et al. Waning of SARS-CoV-2 booster viral-load reduction effectiveness. Nat. Commun. 13, 1237 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, H. et al. Population antibody responses following COVID-19 vaccination in 212,102 individuals. Nat. Commun. 13, 907 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Alós, L. et al. Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors. Nat. Commun. 13, 1614 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Araos, R. et al. Effectiveness of CoronaVac in children 3 to 5 years during the omicron SARS-CoV-2 outbreak. Nat. Med. 28, 1377–1380 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finlay, B. B. et al. The hygiene hypothesis, the COVID pandemic, and consequences for the human microbiome. Proc. Natl Acad. Sci. USA 118, e2010217118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguilera, P. et al. A two-time point analysis of gut microbiota in the general population of buenos aires and its variation due to preventive and compulsory social isolation during the COVID-19 pandemic. Front. Microbiol. 13, 803121 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, Y. et al. Gut microbiome and resistome changes during the first wave of the COVID-19 pandemic in comparison with pre-pandemic travel-related changes. J. Travel Med. 28, taab067 (2021).

    PubMed 

    Google Scholar
     

  • Romano-Keeler, J., Zhang, J. & Sun, J. COVID-19 and the neonatal microbiome: will the pandemic cost infants their microbes? Gut Microbes 13, 1912562 (2021).

    PubMed Central 

    Google Scholar
     

  • Xia, J. S., Oliphant, K. & Claud, E. The pandemic effects on the microbiome of infants in the neonatal intensive care unit (NICU). FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.0R562 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rundle, A. G., Park, Y., Herbstman, J. B., Kinsey, E. W. & Wang, Y. C. COVID-19 related school closings and risk of weight gain among children. Obesity 28, 1008 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, J. J., Bao, Y., Huang, X., Shi, J. & Lu, L. Mental health considerations for children quarantined because of COVID-19. Lancet Child. Adolesc. Health 4, 347–349 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Progression of myopia in school-aged children after COVID-19 home confinement. JAMA Ophthal. 139, 293–300 (2021).


    Google Scholar
     

  • Bauer, K. W. et al. A safety net unraveling: Feeding young children during COVID-19. Am. J. Public Health 111, 116–120 (2021).

    PubMed 

    Google Scholar
     

  • Langford, B. J. et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin. Microbiol. Infect. 27, 520–531 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328.e13 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegazy, M. et al. Beyond probiotic legend: ESSAP gut microbiota health score to delineate SARS-COV-2 infection severity. Br. J. Nutr. 127, 1180–1189 (2021).

    PubMed 

    Google Scholar
     

  • Merino, J. et al. Diet quality and risk and severity of COVID-19: a prospective cohort study. Gut 70, 2096–2104 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hou, Y.-C., Su, W.-L. & Chao, Y.-C. COVID-19 illness severity in the elderly in relation to vegetarian and non-vegetarian diets: a single-center experience. Front. Nutr. 9, 837458 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, L. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 31, 1068–1077.e3 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bousquet, J. et al. Is diet partly responsible for differences in COVID‐19 death rates between and within countries? Clin. Transl. Allergy 10, 16 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Wu, G., Zhao, L. & Wang, W. Nutritional modulation of gut microbiota alleviates severe gastrointestinal symptoms in a patient with post-acute COVID-19 syndrome. mBio 13, e03801–21 (2022).

    PubMed Central 

    Google Scholar
     

  • Schupack, D. A., Mars, R. A., Voelker, D. H., Abeykoon, J. P. & Kashyap, P. C. The promise of the gut microbiome as part of individualized treatment strategies. Nat. Rev. Gastroenterol. Hepatol. 19, 7–25 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Probiotics use is associated with improved clinical outcomes among hospitalized patients with COVID-19. Ther. Adv. Gastroenterol. 14, 17562848211035670 (2021).

    CAS 

    Google Scholar
     

  • Ceccarelli, G. et al. Oral bacteriotherapy in patients with COVID-19: a retrospective cohort study. Front. Nutr. 7, 341 (2021).


    Google Scholar
     

  • Rathi, A., Jadhav, S. B. & Shah, N. A randomized controlled trial of the efficacy of systemic enzymes and probiotics in the resolution of post-COVID fatigue. Medicines 8, 47 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez-Castrellón, P. et al. Probiotic improves symptomatic and viral clearance in Covid19 outpatients: a randomized, quadruple-blinded, placebo-controlled trial. Gut Microbes 14, 2018899 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C. et al. The volatile and heterogeneous gut microbiota shifts of COVID‐19 patients over the course of a probiotics‐assisted therapy. Clin. Transl. Med. 11, e643 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Gut microbiota‐derived synbiotic formula (SIM01) as a novel adjuvant therapy for COVID‐19: An open‐label pilot study. J. Gastroenterol. Hepatol. 37, 823–831 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heavey, M. K., Durmusoglu, D., Crook, N. & Anselmo, A. C. Discovery and delivery strategies for engineered live biotherapeutic products. Trends Biotechnol. 40, 254–369 (2021).


    Google Scholar
     

  • Piscotta, F. J. et al. Metabolites with SARS-CoV-2 inhibitory activity identified from human microbiome commensals. mSphere 6, e0071121 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Liu, F. et al. Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. J. Med. Case Rep. 15, 60 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biliński, J. et al. Rapid resolution of COVID-19 after faecal microbiota transplantation. Gut 71, 230–232 (2022).

    PubMed 

    Google Scholar
     

  • Constantinides, M. G. Interactions between the microbiota and innate and innate‐like lymphocytes. J. Leukoc. Biol. 103, 409–419 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41575-022-00698-4

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]