Connect with us

Health

Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases

Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases

 


  • Ou, S. H., Wu, F., Harrich, D., Garcia-Martinez, L. F. & Gaynor, R. B. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokota, O. et al. Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy. Acta Neuropathol. 120, 55–66 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brenowitz, W. D., Monsell, S. E., Schmitt, F. A., Kukull, W. A. & Nelson, P. T. Hippocampal sclerosis of aging is a key Alzheimer’s disease mimic: clinical-pathologic correlations and comparisons with both Alzheimer’s disease and non-tauopathic frontotemporal lobar degeneration. J. Alzheimers Dis. 39, 691–702 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, P. T. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, K. A. et al. LATE to the PART-y. Brain 142, e47 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi, J. Debate sparks over LATE, a recently recognized dementia. J. Am. Med. Assoc. 322, 914–916 (2019).

    Article 

    Google Scholar
     

  • Nelson, P. T. et al. Reply: LATE to the PART-y. Brain 142, e48 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montine, T. J. et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 123, 1–11 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKee, A. C. et al. TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J. Neuropathol. Exp. Neurol. 69, 918–929 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwab, C., Arai, T., Hasegawa, M., Yu, S. & McGeer, P. L. Colocalization of transactivation-responsive DNA-binding protein 43 and huntingtin in inclusions of Huntington disease. J. Neuropathol. Exp. Neurol. 67, 1159–1165 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sephton, C. F. et al. TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826–6834 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buratti, E. & Baralle, F. E. Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337–36343 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mompean, M. et al. The TDP-43 N-terminal domain structure at high resolution. FEBS J. 283, 1242–1260 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, A. F. & Shorter, J. RNA-binding proteins with prion-like domains in health and disease. Biochem. J. 474, 1417–1438 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Boer, E. M. J. et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 92, 86–95 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, L. & Shorter, J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb. Perspect. Med. 7, a024554 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J., Wang, L., Huntley, M. L., Perry, G. & Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. https://doi.org/10.1111/jnc.14327 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A. & Patel, B. K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 12, 25 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lalmansingh, A. S., Urekar, C. J. & Reddi, P. P. TDP-43 is a transcriptional repressor: the testis-specific mouse acrv1 gene is a TDP-43 target in vivo. J. Biol. Chem. 286, 10970–10982 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freibaum, B. D., Chitta, R. K., High, A. A. & Taylor, J. P. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J. Proteome Res. 9, 1104–1120 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu-Yesucevitz, L. et al. ALS-linked mutations enlarge TDP-43-enriched neuronal RNA granules in the dendritic arbor. J. Neurosci. 34, 4167–4174 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buratti, E. et al. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J. Biol. Chem. 280, 37572–37584 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawahara, Y. & Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmid, B. et al. Loss of ALS-associated TDP-43 in zebrafish causes muscle degeneration, vascular dysfunction, and reduced motor neuron axon outgrowth. Proc. Natl Acad. Sci. USA 110, 4986–4991 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forman, M. S., Trojanowski, J. Q. & Lee, V. M. TDP-43: a novel neurodegenerative proteinopathy. Curr. Opin. Neurobiol. 17, 548–555 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nag, S. et al. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol. Commun. 6, 33 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, R. S. et al. TDP-43 pathology, cognitive decline, and dementia in old age. JAMA Neurol. 70, 1418–1424 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. J. et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 106, 7607–7612 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumann, M. et al. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol. 117, 137–149 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amador-Ortiz, C. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann. Neurol. 61, 435–445 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinoshita, A., Tomimoto, H., Suenaga, T., Akiguchi, I. & Kimura, J. Ubiquitin-related cytoskeletal abnormality in frontotemporal dementia: immunohistochemical and immunoelectron microscope studies. Acta Neuropathol. 94, 67–72 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, W. L. & Dickson, D. W. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol. 116, 205–213 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarutani, A. et al. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol. 143, 613–640 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwong, L. K., Uryu, K., Trojanowski, J. Q. & Lee, V. M. TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals 16, 41–51 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, B. S. et al. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J. Biol. Chem. 284, 20329–20339 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nag, S. et al. TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD. Neurology 88, 653–660 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, B. D. et al. TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139, 2983–2993 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nag, S. et al. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann. Neurol. 77, 942–952 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, S. J., Dugger, B. N. & Beach, T. G. TDP-43 deposition in prospectively followed, cognitively normal elderly individuals: correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathol. 126, 51–57 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uchino, A. et al. Incidence and extent of TDP-43 accumulation in aging human brain. Acta Neuropathol. Commun. 3, 35 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, P. T. et al. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol. 145, 159–173 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Josephs, K. A. et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 127, 441–450 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josephs, K. A. et al. Updated TDP-43 in Alzheimer’s disease staging scheme. Acta Neuropathol. 131, 571–585 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, K. A. & Dickson, D. W. TDP-43 in the olfactory bulb in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 42, 390–393 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chio, A. et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41, 118–130 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bersano, E. et al. Decline of cognitive and behavioral functions in amyotrophic lateral sclerosis: a longitudinal study. Amyotroph. Lateral Scler. Frontotemporal Degener. 21, 373–379 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Crockford, C. et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 91, e1370–e1380 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phukan, J., Pender, N. P. & Hardiman, O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 6, 994–1003 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasinelli, P. & Brown, R. H. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldman, E. L. et al. Amyotrophic lateral sclerosis. Lancet 400, 1363–1380 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, R. H. & Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 377, 162–172 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chia, R., Chio, A. & Traynor, B. J. Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 17, 94–102 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lattante, S., Rouleau, G. A. & Kabashi, E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum. Mutat. 34, 812–826 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawkes, C. H., Shephard, B. C., Geddes, J. F., Body, G. D. & Martin, J. E. Olfactory disorder in motor neuron disease. Exp. Neurol. 150, 248–253 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeda, T. et al. TDP-43 pathology progression along the olfactory pathway as a possible substrate for olfactory impairment in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 74, 547–556 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cykowski, M. D. et al. Phosphorylated TDP-43 (pTDP-43) aggregates in the axial skeletal muscle of patients with sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathol. Commun. 6, 28 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, F. et al. Phosphorylated TDP-43 aggregates in skeletal and cardiac muscle are a marker of myogenic degeneration in amyotrophic lateral sclerosis and various conditions. Acta Neuropathol. Commun. 7, 165 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. S. Does a loss of TDP-43 function cause neurodegeneration? Mol. Neurodegener. 7, 27 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, E. S. et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc. Natl Acad. Sci. USA 110, E736–E745 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, J. A. et al. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc. Natl Acad. Sci. USA 111, 4309–4314 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barmada, S. J. et al. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanden Broeck, L., Callaerts, P. & Dermaut, B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol. Med. 20, 66–71 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bentmann, E. et al. Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem. 287, 23079–23094 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGurk, L. et al. Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J. Neuropathol. Exp. Neurol. 73, 837–845 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu-Yesucevitz, L. et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5, e13250 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mann, J. R. et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102, 321–338.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat. Med. 22, 869–878 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Motor-coordinative and cognitive dysfunction caused by mutant TDP-43 could be reversed by inhibiting its mitochondrial localization. Mol. Ther. 25, 127–139 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chio, A., Mazzini, L. & Mora, G. Disease-modifying therapies in amyotrophic lateral sclerosis. Neuropharmacology 167, 107986 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Gall, L. et al. Molecular and cellular mechanisms affected in ALS. J. Pers. Med. 10, 101 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mejzini, R. et al. ALS genetics, mechanisms, and therapeutics: where are we now? Front. Neurosci. 13, 1310 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J., Wang, L., Yan, T., Perry, G. & Wang, X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol. Cell Neurosci. 100, 103396 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gendron, T. F., Josephs, K. A. & Petrucelli, L. Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol. Appl. Neurobiol. 36, 97–112 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loganathan, S., Lehmkuhl, E. M., Eck, R. J. & Zarnescu, D. C. To be or not to be … toxic — is RNA association with TDP-43 complexes deleterious or protective in neurodegeneration? Front. Mol. Biosci. 6, 154 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Es, M. A. et al. Amyotrophic lateral sclerosis. Lancet 390, 2084–2098 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sieben, A. et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 124, 353–372 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns, N. J. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol. 114, 5–22 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lashley, T., Rohrer, J. D., Mead, S. & Revesz, T. Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol. Appl. Neurobiol. 41, 858–881 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rosso, S. M. et al. Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126, 2016–2022 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Onyike, C. U. & Huey, E. D. Frontotemporal dementia and psychiatry. Int. Rev. Psychiatry 25, 127–129 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKhann, G. et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–944 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorno-Tempini, M. L. et al. Classification of primary progressive aphasia and its variants. Neurology 76, 1006–1014 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snowden, J. S., Neary, D. & Mann, D. M. Frontotemporal dementia. Br. J. Psychiatry 180, 140–143 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Brettschneider, J. et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol. 127, 423–439 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrell, J. R. et al. The frontotemporal dementia-motor neuron disease continuum. Lancet 388, 919–931 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rohrer, J. D. et al. TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75, 2204–2211 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitwell, J. L. et al. Does TDP-43 type confer a distinct pattern of atrophy in frontotemporal lobar degeneration? Neurology 75, 2212–2220 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. B. et al. Expansion of the classification of FTLD-TDP: distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathol. 134, 65–78 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neumann, M., Lee, E. B. & Mackenzie, I. R. Frontotemporal lobar degeneration TDP-43-immunoreactive pathological subtypes: clinical and mechanistic significance. Adv. Exp. Med. Biol. 1281, 201–217 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat. Genet. 42, 234–239 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finger, E. C. Frontotemporal dementias. Continuum 22, 464–489 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. L. et al. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 143, 2844–2857 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geser, F. et al. Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch. Neurol. 67, 1238–1250 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAleese, K. E. et al. TDP-43 pathology in Alzheimer’s disease, dementia with Lewy bodies and ageing. Brain Pathol. 27, 472–479 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oveisgharan, S. et al. Sex differences in Alzheimer’s disease and common neuropathologies of aging. Acta Neuropathol. 136, 887–900 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besser, L. M. et al. The revised national Alzheimer’s coordinating center’s neuropathology form — available data and new analyses. J. Neuropathol. Exp. Neurol. 77, 717–726 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsumata, Y., Fardo, D. W., Kukull, W. A. & Nelson, P. T. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer’s disease and cerebrovascular disease pathologies. Acta Neuropathol. Commun. 6, 142 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. The TMEM106B locus and TDP-43 pathology in older persons without FTLD. Neurology 84, 927–934 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugan, A. J. et al. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol. Commun. 9, 152 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H. S. et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol. 17, 773–781 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wennberg, A. M. et al. Association of apolipoprotein E ε4 with transactive response DNA-binding protein 43. JAMA Neurol. 75, 1347–1354 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beecham, G. W. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10, e1004606 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mormino, E. C. et al. Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 82, 1760–1767 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L., Boyle, P. A., Leurgans, S., Schneider, J. A. & Bennett, D. A. Disentangling the effects of age and APOE on neuropathology and late life cognitive decline. Neurobiol. Aging 35, 819–826 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Power, M. C. et al. Combined neuropathological pathways account for age-related risk of dementia. Ann. Neurol. 84, 10–22 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, P. T. et al. Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol. 20, 66–79 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Kapasi, A. et al. Limbic-predominant age-related TDP-43 encephalopathy, ADNC pathology, and cognitive decline in aging. Neurology 95, e1951–e1962 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, W. T. et al. Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old. Acta Neuropathol. 142, 917–919 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. L. et al. Non-Alzheimer’s contributions to dementia and cognitive resilience in the 90+ Study. Acta Neuropathol. 136, 377–388 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, B. D., Bennett, D. A., Boyle, P. A., Leurgans, S. & Schneider, J. A. Dementia from Alzheimer disease and mixed pathologies in the oldest old. J. Am. Med. Assoc. 307, 1798–1800 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nag, S. et al. Limbic-predominant age-related TDP-43 encephalopathy in Black and White decedents. Neurology 95, e2056–e2064 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, D. W., Gazmararian, J. A., Sudano, J. & Patterson, M. The association between age and health literacy among elderly persons. J. Gerontol. B Psychol. Sci. Soc. Sci. 55, S368–S374 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudore, R. L. et al. Limited literacy and mortality in the elderly: the health, aging, and body composition study. J. Gen. Intern. Med. 21, 806–812 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyle, P. A. et al. Cognitive decline impairs financial and health literacy among community-based older persons without dementia. Psychol. Aging 28, 614–624 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. D., Boyle, P. A., James, B. D., Yu, L. & Bennett, D. A. Poorer financial and health literacy among community-dwelling older adults with mild cognitive impairment. J. Aging Health 27, 1105–1117 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, R. S., Yu, L., James, B. D., Bennett, D. A. & Boyle, P. A. Association of financial and health literacy with cognitive health in old age. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 24, 186–197 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, L., Wilson, R. S., Schneider, J. A., Bennett, D. A. & Boyle, P. A. Financial and health literacy predict incident Alzheimer’s disease dementia and pathology. J. Alzheimers Dis. 56, 1485–1493 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapasi, A. et al. Association of TDP-43 pathology with domain-specific literacy in older persons. Alzheimer Dis. Assoc. Disord. 33, 315–320 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Besser, L. M., Teylan, M. A. & Nelson, P. T. Limbic predominant age-related TDP-43 encephalopathy (LATE): clinical and neuropathological associations. J. Neuropathol. Exp. Neurol. 79, 305–313 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arvanitakis, Z., Wilson, R. S., Li, Y., Aggarwal, N. T. & Bennett, D. A. Diabetes and function in different cognitive systems in older individuals without dementia. Diabetes Care 29, 560–565 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Kioumourtzoglou, M. A. et al. Diabetes mellitus, obesity, and diagnosis of amyotrophic lateral sclerosis: a population-based study. JAMA Neurol. 72, 905–911 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mariosa, D., Kamel, F., Bellocco, R., Ye, W. & Fang, F. Association between diabetes and amyotrophic lateral sclerosis in Sweden. Eur. J. Neurol. 22, 1436–1442 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oveisgharan, S. et al. Association of hemoglobin A1C with TDP-43 pathology in community-based elders. Neurology 96, e2694–e2703 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arai, T. et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol. 117, 125–136 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josephs, K. A. et al. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70, 1850–1857 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josephs, K. A. et al. TAR DNA-binding protein 43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann. Neurol. 78, 697–709 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, K. A. et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 127, 811–824 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, K. A. et al. Pathological, imaging and genetic characteristics support the existence of distinct TDP-43 types in non-FTLD brains. Acta Neuropathol. 137, 227–238 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, P. T. et al. Hippocampal sclerosis in advanced age: clinical and pathological features. Brain 134, 1506–1518 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawe, R. J., Bennett, D. A., Schneider, J. A. & Arfanakis, K. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One 6, e26286 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, L. et al. Contribution of TDP and hippocampal sclerosis to hippocampal volume loss in older-old persons. Neurology 94, e142–e152 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarow, C., Weiner, M. W., Ellis, W. G. & Chui, H. C. Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample. Brain Behav. 2, 435–442 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, K. A. & Dickson, D. W. Hippocampal sclerosis in tau-negative frontotemporal lobar degeneration. Neurobiol. Aging 28, 1718–1722 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murray, M. E. et al. Progressive amnestic dementia, hippocampal sclerosis, and mutation in C9ORF72. Acta Neuropathol. 126, 545–554 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popkirov, S. et al. Progressive hippocampal sclerosis after viral encephalitis: potential role of NMDA receptor antibodies. Seizure 51, 6–8 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Thom, M. et al. Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: neuropathological features. J. Neuropathol. Exp. Neurol. 68, 928–938 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Dickson, D. W. et al. Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans. Acta Neuropathol. 88, 212–221 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, P. T. et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 126, 161–177 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neltner, J. H. et al. Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing. Brain 137, 255–267 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gauthreaux, K. M. et al. Limbic-predominant age-related TDP-43 encephalopathy: medical and pathologic factors associated with comorbid hippocampal sclerosis. Neurology 98, e1422–e1433 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pao, W. C. et al. Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis. Assoc. Disord. 25, 364–368 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hokkanen, S. R. K. et al. Putative risk alleles for LATE-NC with hippocampal sclerosis in population-representative autopsy cohorts. Brain Pathol. 30, 364–372 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson, P. T. et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 127, 825–843 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, P. T. et al. ABCC9/SUR2 in the brain: implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res. Rev. 24, 111–125 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, P. T. et al. TDP-43 proteinopathy in aging: associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol. Dis. 125, 67–76 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morte, B. & Bernal, J. Thyroid hormone action: astrocyte-neuron communication. Front. Endocrinol. 5, 82 (2014).

    Article 

    Google Scholar
     

  • Nakashima-Yasuda, H. et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases. Acta Neuropathol. 114, 221–229 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higashi, S. et al. Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res. 1184, 284–294 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura, M. T. et al. Distinct characteristics of limbic-predominant age-related TDP-43 encephalopathy in Lewy body disease. Acta Neuropathol. 143, 15–31 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agrawal, S. et al. The association of Lewy bodies with limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes and their role in cognition and Alzheimer’s dementia in older persons. Acta Neuropathol. Commun. 9, 156 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blevins, B. L. et al. Brain arteriolosclerosis. Acta Neuropathol. 141, 1–24 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ighodaro, E. T. et al. Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals. J. Cereb. Blood Flow. Metab. 37, 201–216 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourassa, P., Tremblay, C., Schneider, J. A., Bennett, D. A. & Calon, F. Brain mural cell loss in the parietal cortex in Alzheimer’s disease correlates with cognitive decline and TDP-43 pathology. Neuropathol. Appl. Neurobiol. 46, 458–477 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal, S. et al. Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change and microvascular pathologies in community-dwelling older persons. Brain Pathol. 31, e12939 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Josephs, K. A. et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 133, 705–715 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Phosphorylated TDP-43 staging of primary age-related tauopathy. Neurosci. Bull. 35, 183–192 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grothe, M. J. et al. Differential diagnosis of amnestic dementia patients based on an FDG-PET signature of autopsy-confirmed LATE-NC. Alzheimers Dement. 19, 1234–1244 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makkinejad, N. et al. Associations of amygdala volume and shape with transactive response DNA-binding protein 43 (TDP-43) pathology in a community cohort of older adults. Neurobiol. Aging 77, 104–111 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. X., Tanji, K., Mori, F. & Wakabayashi, K. Epitope mapping of 2E2-D3, a monoclonal antibody directed against human TDP-43. Neurosci. Lett. 434, 170–174 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feneberg, E., Gray, E., Ansorge, O., Talbot, K. & Turner, M. R. Towards a TDP-43-based biomarker for ALS and FTLD. Mol. Neurobiol. 55, 7789–7801 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majumder, V., Gregory, J. M., Barria, M. A., Green, A. & Pal, S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol. 18, 90 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foulds, P. et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol. 116, 141–146 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foulds, P. G. et al. Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol. 118, 647–658 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prasad, A. et al. An acridine derivative, [4,5-bis{(N-carboxy methyl imidazolium)methyl}acridine] dibromide, shows anti-TDP-43 aggregation effect in ALS disease models. Sci. Rep. 6, 39490 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, S. J. et al. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS One 7, e42277 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, I. F. et al. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl Acad. Sci. USA 109, 15024–15029 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeynaems, S., Bogaert, E., Van Damme, P. & Van Den Bosch, L. Inside out: the role of nucleocytoplasmic transport in ALS and FTLD. Acta Neuropathol. 132, 159–173 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dormann, D. & Haass, C. TDP-43 and FUS: a nuclear affair. Trends Neurosci. 34, 339–348 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. J. & Taylor, J. P. Lost in transportation: nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases. Neuron 96, 285–297 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ederle, H. et al. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci. Rep. 8, 7084 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portz, B., Lee, B. L. & Shorter, J. FUS and TDP-43 phases in health and disease. Trends Biochem. Sci. 46, 550–563 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amado, D. A. & Davidson, B. L. Gene therapy for ALS: a review. Mol. Ther. 29, 3345–3358 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullard, A. ALS antisense drug falters in phase III. Nat. Rev. Drug Discov. 20, 883–885 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, H. et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2, 209–217 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura, A. L. et al. Allele-specific knockdown of ALS-associated mutant TDP-43 in neural stem cells derived from induced pluripotent stem cells. PLoS One 9, e91269 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morata-Tarifa, C., Azkona, G., Glass, J., Mazzini, L. & Sanchez-Pernaute, R. Looking backward to move forward: a meta-analysis of stem cell therapy in amyotrophic lateral sclerosis. NPJ Regen. Med. 6, 20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shorter, J. Engineering therapeutic protein disaggregases. Mol. Biol. Cell 27, 1556–1560 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mack, K. L. & Shorter, J. Engineering and evolution of molecular chaperones and protein disaggregases with enhanced activity. Front. Mol. Biosci. 3, 8 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tariq, A. et al. Mining disaggregase sequence space to safely counter TDP-43, FUS, and α-synuclein proteotoxicity. Cell Rep. 28, 2080–2095.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, E. Large autopsy study estimates prevalence of “LATE” neuropathologic change. J. Am. Med. Assoc. 328, 815–816 (2022).

    Article 

    Google Scholar
     

  • He, W., Goodkind, D. & Kowal, P. in Population Reports, P95/16-1 (eds. International US Census Bureau) (US Government Publication Office, 2016).

  • Bigio, E. H. TDP-43 variants of frontotemporal lobar degeneration. J. Mol. Neurosci. 45, 390–401 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackenzie, I. R. & Neumann, M. Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol. 134, 79–96 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukavsky, P. J. et al. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat. Struct. Mol. Biol. 20, 1443–1449 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geser, F. et al. Pathological TDP-43 in parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol. 115, 133–145 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishima, T. et al. Perry syndrome: a distinctive type of TDP-43 proteinopathy. J. Neuropathol. Exp. Neurol. 76, 676–682 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wider, C. et al. Pallidonigral TDP-43 pathology in Perry syndrome. Parkinsonism Relat. Disord. 15, 281–286 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Davidson, Y. S. et al. TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol. 122, 703–713 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Lippa, C. F. et al. Transactive response DNA-binding protein 43 burden in familial Alzheimer disease and down syndrome. Arch. Neurol. 66, 1483–1488 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeman, S. H., Spires-Jones, T., Hyman, B. T., Growdon, J. H. & Frosch, M. P. TAR-DNA binding protein 43 in Pick disease. J. Neuropathol. Exp. Neurol. 67, 62–67 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujishiro, H. et al. Accumulation of phosphorylated TDP-43 in brains of patients with argyrophilic grain disease. Acta Neuropathol. 117, 151–158 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hasegawa, M. et al. TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130, 1386–1394 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, C. F. et al. Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathol. 118, 553–560 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Toyoshima, Y. et al. Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathol. 122, 375–378 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sakurai, A., Makioka, K., Fukuda, T., Takatama, M. & Okamoto, K. Accumulation of phosphorylated TDP-43 in the CNS of a patient with Cockayne syndrome. Neuropathology 33, 673–677 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, A. K. et al. Astrocytic TDP-43 pathology in Alexander disease. J. Neurosci. 34, 6448–6458 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, D. A. et al. Religious orders study and rush memory and aging project. J. Alzheimers Dis. 64, S161–S189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleischman, D. A. et al. Regional brain cortical thinning and systemic inflammation in older persons without dementia. J. Am. Geriatr. Soc. 58, 1823–1825 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nag, S. et al. Ex vivo MRI facilitates localization of cerebral microbleeds of different ages during neuropathology assessment. Free Neuropathol. 2, 2–35 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41582-023-00846-7

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]