Connect with us

Health

Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors | Journal of Translational Medicine

Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors | Journal of Translational Medicine

 


  • Zhai Y, Franco LM, Atmar RL, Quarles JM, Arden N, Bucasas KL, Wells JM, Nino D, Wang X, Zapata GE, et al. Host transcriptional response to influenza and other acute respiratory viral infections–A prospective cohort study. PLoS Pathog. 2015;11: e1004869.

    Article 

    Google Scholar
     

  • Pommerenke C, Wilk E, Srivastava B, Schulze A, Novoselova N, Geffers R, Schughart K. Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS ONE. 2012;7: e41169.

    Article 

    Google Scholar
     

  • Huang Y, Zaas AK, Rao A, Dobigeon N, Woolf PJ, Veldman T, Oien NC, McClain MT, Varkey JB, Nicholson B, et al. Temporal dynamics of host molecular responses differentiate symptomatic and asymptomatic influenza a infection. PLoS Genet. 2011;7: e1002234.

    Article 

    Google Scholar
     

  • Vardhana SA, Wolchok JD. The many faces of the anti-COVID immune response. J Exp Med. 2020. https://doi.org/10.1084/jem.20200678.

    Article 

    Google Scholar
     

  • Maurya R, Shamim U, Chattopadhyay P, Mehta P, Mishra P, Devi P, Swaminathan A, Saifi S, Khare K, Yadav A. Human-host transcriptomic analysis reveals unique early innate immune responses in different sub-phenotypes of COVID-19. Clin Transl Med. 2022;12: e856.

    Article 

    Google Scholar
     

  • Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan China. Intensive Care Med. 2020;46:846–8.

    Article 

    Google Scholar
     

  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, Jordan TX, Oishi K, Panis M, Sachs D, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(1036–1045): e1039.


    Google Scholar
     

  • Park A, Iwasaki A. Type I and type III interferons – induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020;27:870–8.

    Article 

    Google Scholar
     

  • Tartaro DL, Neroni A, Paolini A, Borella R, Mattioli M, Fidanza L, Quong A, Petes C, Awong G, Douglas S. Molecular and cellular immune features of aged patients with severe COVID-19 pneumonia. Commun Biol. 2022. https://doi.org/10.1038/s42003-022-03537-z.

    Article 

    Google Scholar
     

  • Cruz-Pulido D, Ouma WZ, Kenney SP. Differing coronavirus genres alter shared host signaling pathways upon viral infection. Sci Rep. 2022;12:1–12.

    Article 

    Google Scholar
     

  • Liu X, Speranza E, Muñoz-Fontela C, Haldenby S, Rickett NY, Garcia-Dorival I, Fang Y, Hall Y, Zekeng EG, Lüdtke A, et al. Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biol. 2017;18:4.

    Article 

    Google Scholar
     

  • Petzke MM, Volyanskyy K, Mao Y, Arevalo B, Zohn R, Quituisaca J, Wormser GP, Dimitrova N, Schwartz I, Norris SJ. Global transcriptome analysis identifies a diagnostic signature for early disseminated Lyme disease and its resolution. mBio. 2020;11:e00047-00020.

    Article 

    Google Scholar
     

  • Logue JK, Franko NM, McCulloch DJ, McDonald D, Magedson A, Wolf CR, Chu HY. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4:e210830–e210830.

    Article 

    Google Scholar
     

  • Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063.

    Article 

    Google Scholar
     

  • Hoagland DA, Møller R, Uhl SA, Oishi K, Frere J, Golynker I, Horiuchi S, Panis M, Blanco-Melo D, Sachs D. Leveraging the antiviral type-I interferon system as a first line defense against SARS-CoV-2 pathogenicity. Immunity. 2021. https://doi.org/10.1016/j.immuni.2021.01.017.

    Article 

    Google Scholar
     

  • Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ, Dobias NS, Heymann JC, Foster SL, Levine CB, Medina L. Establishment of an African green monkey model for COVID-19 and protection against re-infection. Nat Immunol. 2021;22:86–98.

    Article 

    Google Scholar
     

  • Batchu S, Yu S. Age-associated ligand-receptor interactions imputed from nasopharyngeal transcriptomes of COVID-19 patients. Immunol Invest. 2021. https://doi.org/10.1080/08820139.2021.188248.

    Article 

    Google Scholar
     

  • Abikhair Burgo M, Roudiani N, Chen J, Santana AL, Doudican N, Proby C, Felsen D, Carucci JA. Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.120750.

    Article 

    Google Scholar
     

  • Dai Y, Wang J, Jeong H-H, Chen W, Jia P, Zhao Z. Association of CXCR6 with COVID-19 severity: delineating the host genetic factors in transcriptomic regulation. BioRxiv. 2021. https://doi.org/10.1101/2021.02.17.431554.

    Article 

    Google Scholar
     

  • Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, Surapaneni NS, Matusov YP, Chiang GC, Kassar AG. Cell-type-specific immune dysregulation in severely Ill COVID-19 patients. Cell Rep. 2021;34: 108590.

    Article 

    Google Scholar
     

  • Sabioni L, De Lorenzo A, Lamas C, Muccillo F, Castro-Faria-Neto HC, Estato V, Tibirica E. Systemic microvascular endothelial dysfunction and disease severity in COVID-19 patients: evaluation by laser Doppler perfusion monitoring and cytokine/chemokine analysis. Microvasc Res. 2021;134: 104119.

    Article 

    Google Scholar
     

  • Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X, Zhou X, Niu X, Wang L, Su M. The molecular mechanism of multiple organ dysfunction and targeted intervention of COVID-19 based on time-order transcriptomic analysis. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.729776.

    Article 

    Google Scholar
     

  • Sohn KM, Lee S-G, Kim HJ, Cheon S, Jeong H, Lee J, Kim IS, Silwal P, Kim YJ, Paik S. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci. 2020. https://doi.org/10.3346/jkms.2020.35.e343.

    Article 

    Google Scholar
     

  • Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front Immunol. 2020;11:3446.

    Article 

    Google Scholar
     

  • Nilsson-Payant BE, Uhl S, Grimont A, Doane AS, Cohen P, Patel RS, Higgins CA, Acklin JA, Bram Y, Chandar V. The NF-κB transcriptional footprint is essential for SARS-CoV-2 replication. J Virol. 2021;95:e01257-e11221.

    Article 

    Google Scholar
     

  • Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Javanmard G, Rezaee M, Kastelic J, Barkema H. Differential co-expression network analysis reveals key hub-high traffic genes as potential therapeutic targets for COVID-19 pandemic. Front Immunol. 2021;12:789317–789317.

    Article 

    Google Scholar
     

  • Vastrad B, Vastrad C, Tengli A. Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech. 2020;10:1–65.

    Article 

    Google Scholar
     

  • Farahani M, Niknam Z, Amirabad LM, Amiri-Dashatan N, Koushki M, Nemati M, Pouya FD, Rezaei-Tavirani M, Rasmi Y, Tayebi L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother. 2022;145: 112420.

    Article 

    Google Scholar
     

  • Ferreira-Gomes M, Kruglov A, Durek P, Heinrich F, Tizian C, Heinz GA, Pascual-Reguant A, Du W, Mothes R, Fan C. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun. 2021;12:1–14.

    Article 

    Google Scholar
     

  • Shen W-X, Luo R-C, Wang J-Q, Chen Z-S. Features of cytokine storm identified by distinguishing clinical manifestations in COVID-19. Front Public Health. 2021;9:614.

    Article 

    Google Scholar
     

  • Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: the possible therapy against pandemic COVID-19. Gene reports. 2020;20: 100765.

    Article 

    Google Scholar
     

  • Dinarello C, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289.

    Article 

    Google Scholar
     

  • Harms RZ, Creer AJ, Lorenzo-Arteaga KM, Ostlund KR, Sarvetnick NE. Interleukin (IL)-18 binding protein deficiency disrupts natural killer cell maturation and diminishes circulating IL-18. Front Immunol. 2017;8:1020.

    Article 

    Google Scholar
     

  • Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020;383:2255–73.

    Article 

    Google Scholar
     

  • Wang P, Jin X, Zhou W, Luo M, Xu Z, Xu C, Li Y, Ma K, Cao H, Huang Y. Comprehensive analysis of TCR repertoire in COVID-19 using single cell sequencing. Genomics. 2021;113:456–62.

    Article 

    Google Scholar
     

  • Luo L, Liang W, Pang J, Xu G, Chen Y, Guo X, Wang X, Zhao Y, Lai Y, Liu Y. Dynamics of TCR repertoire and T cell function in COVID-19 convalescent individuals. Cell discovery. 2021;7:1–17.

    Article 

    Google Scholar
     

  • Tang-Huau T-L, Gueguen P, Goudot C, Durand M, Bohec M, Baulande S, Pasquier B, Amigorena S, Segura E. Human in vivo-generated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat Commun. 2018;9:1–12.

    Article 

    Google Scholar
     

  • Braciale TJ, Sun J, Kim TS. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol. 2012;12:295–305.

    Article 

    Google Scholar
     

  • Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V (D) J recombination. Cell. 2002;109:S45–55.

    Article 

    Google Scholar
     

  • Wang G, Wang Y, Jiang S, Fan W, Mo C, Gong W, Chen H, He D, Huang J, Ou M. Comprehensive analysis of TCR repertoire of COVID-19 patients in different infected stage. Genes Genom. 2022. https://doi.org/10.1007/s13258-022-01261-w.

    Article 

    Google Scholar
     

  • Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol. 2006;533:327–40.

    Article 

    Google Scholar
     

  • Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res: the official journal of the International Society for Interferon and Cytokine Research. 2009;29:313–26.

    Article 

    Google Scholar
     

  • Carmen J, Gowing G, Julien JP, Kerr D. Altered immune response to CNS viral infection in mice with a conditional knock-down of macrophage-lineage cells. Glia. 2006;54:71–80.

    Article 

    Google Scholar
     

  • Ito C, Sato H, Ando K, Watanabe S, Yoshiba F, Kishi K, Furuya A, Shitara K, Sugimoto S, Kohno H, et al. Serum stem cell growth factor for monitoring hematopoietic recovery following stem cell transplantation. Bone Marrow Transplant. 2003;32:391–8.

    Article 

    Google Scholar
     

  • Kennedy AE, Cook L, Breznik JA, Cowbrough B, Wallace JG, Huynh A, Smith JW, Son K, Stacey H, Ang J, et al. Lasting changes to circulating leukocytes in people with mild SARS-CoV-2 infections. Viruses. 2021;13:2239.

    Article 

    Google Scholar
     

  • Han Q, Wen X, Wang L, Han X, Shen Y, Cao J, Peng Q, Xu J, Zhao L, He J, Yuan H. Role of hematological parameters in the diagnosis of influenza virus infection in patients with respiratory tract infection symptoms. J Clin Lab Anal. 2020;34: e23191.

    Article 

    Google Scholar
     

  • Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, Palomba P, Mirabella M, Cascioli S, Palange P, et al. Different innate and adaptive immune responses to SARS-CoV-2 infection of asymptomatic, mild, and severe cases. Front Immunol. 2020;11: 610300.

    Article 

    Google Scholar
     

  • Liu J, Yang X, Wang H, Li Z, Deng H, Liu J, Xiong S, He J, Feng X, Guo C, et al. Analysis of the long-term impact on cellular immunity in COVID-19-recovered individuals reveals a profound NKT cell impairment. mBio. 2021. https://doi.org/10.1128/mBio.00085-21.

    Article 

    Google Scholar
     

  • Aghbash PS, Eslami N, Shamekh A, Entezari-Maleki T, Baghi HB. SARS-CoV-2 infection: the role of PD-1/PD-L1 and CTLA-4 axis. Life Sci. 2021;270: 119124.

    Article 

    Google Scholar
     

  • Sharif-Askari NS, Sharif-Askari FS, Mdkhana B, Al Heialy S, Alsafar HS, Hamoudi R, Hamid Q, Halwani R. Enhanced expression of immune checkpoint receptors during SARS-CoV-2 viral infection. Mol Ther-Methods Clin Dev. 2021;20:109–21.

    Article 

    Google Scholar
     

  • Neidleman J, Luo X, George AF, McGregor M, Yang J, Yun C, Murray V, Gill G, Greene WC, Vasquez J. Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19. Cell Rep. 2021;36: 109414.

    Article 

    Google Scholar
     

  • Hou H, Zhang Y, Tang G, Luo Y, Liu W, Cheng C, Jiang Y, Xiong Z, Wu S, Sun Z. Immunologic memory to SARS-CoV-2 in convalescent COVID-19 patients at 1 year postinfection. J Allergy Clin Immunol. 2021;148(1481–1492): e1482.


    Google Scholar
     

  • Li X, Garg M, Jia T, Liao Q, Yuan L, Li M, Wu Z, Wu W, Bi Y, George N. Single-cell analysis reveals the immune characteristics of myeloid cells and memory T cells in recovered COVID-19 patients with different severities. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2021.781432.

    Article 

    Google Scholar
     

  • Shekhawat J, Gauba K, Gupta S, Purohit P, Mitra P, Garg M, Misra S, Sharma P, Banerjee M. Interleukin-6 perpetrator of the COVID-19 cytokine storm. Indian J Clin Biochem. 2021;36:440–50.

    Article 

    Google Scholar
     

  • Chen LY, Hoiland RL, Stukas S, Wellington CL, Sekhon MS. Confronting the controversy: interleukin-6 and the COVID-19 cytokine storm syndrome. Eur Respiratory Soc. 2020. https://doi.org/10.1183/13993003.03006-2020.

    Article 

    Google Scholar
     

  • Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976–88.

    Article 

    Google Scholar
     

  • Didangelos A. COVID-19 hyperinflammation: what about neutrophils? MSphere. 2020;5:e00367-e1320.

    Article 

    Google Scholar
     

  • Chevrier S, Zurbuchen Y, Cervia C, Adamo S, Raeber ME, de Souza N, Sivapatham S, Jacobs A, Bachli E, Rudiger A. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep Med. 2021;2: 100166.

    Article 

    Google Scholar
     

  • Mardi A, Meidaninikjeh S, Nikfarjam S, Majidi Zolbanin N, Jafari R. Interleukin-1 in COVID-19 infection: immunopathogenesis and possible therapeutic perspective. Viral Immunol. 2021;34:679–88.

    Article 

    Google Scholar
     

  • Galbraith MD, Kinning KT, Sullivan KD, Araya P, Smith KP, Granrath RE, Shaw JR, Baxter R, Jordan KR, Russell S. Specialized interferon action in COVID-19. Proc Natl Acad Sci. 2022;119: e2116730119.

    Article 

    Google Scholar
     

  • Wang JY, Zhang W, Roehrl MW, Roehrl VB, Roehrl MH. An autoantigen profile of human A549 lung cells reveals viral and host etiologic molecular attributes of autoimmunity in COVID-19. J Autoimmun. 2021;120: 102644.

    Article 

    Google Scholar
     

  • Daamen AR, Bachali P, Owen KA, Kingsmore KM, Hubbard EL, Labonte AC, Robl R, Shrotri S, Grammer AC, Lipsky PE. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Sci Rep. 2021;11:1–19.

    Article 

    Google Scholar
     

  • Mathieu NA, Paparisto E, Barr SD, Spratt DE. HERC5 and the ISGylation pathway: critical modulators of the antiviral immune response. Viruses. 2021;13:1102.

    Article 

    Google Scholar
     

  • Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD. Immunology of COVID-19: current state of the science. Immunity. 2020;52:910–41.

    Article 

    Google Scholar
     

  • Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23:194–202.

    Article 

    Google Scholar
     

  • Zapor M. Persistent detection and infectious potential of SARS-CoV-2 virus in clinical specimens from COVID-19 patients. Viruses. 2020. https://doi.org/10.3390/v12121384.

    Article 

    Google Scholar
     

  • van Doorn AS, Meijer B, Frampton CMA, Barclay ML, de Boer NKH. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission. Aliment Pharmacol Ther. 2020;52:1276–88.


    Google Scholar
     

  • Morone G, Palomba A, Iosa M, Caporaso T, De Angelis D, Venturiero V, Savo A, Coiro P, Carbone D, Gimigliano F, et al. Incidence and persistence of viral shedding in COVID-19 post-acute patients with negativized pharyngeal swab: a systematic review. Front Med (Lausanne). 2020;7:562.

    Article 

    Google Scholar
     

  • LaVergne SM, Stromberg S, Baxter BA, Webb TL, Dutt TS, Berry K, Tipton M, Haberman J, Massey BR, McFann K, et al. A longitudinal SARS-CoV-2 biorepository for COVID-19 survivors with and without post-acute sequelae. BMC Infect Dis. 2021;21:677.

    Article 

    Google Scholar
     

  • Yang T, Yang Y, Wang D, Li C, Qu Y, Guo J, Shi T, Bo W, Sun Z, Asakawa T. The clinical value of cytokines in chronic fatigue syndrome. J Transl Med. 2019;17:213.

    Article 

    Google Scholar
     

  • Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier C, Patel SK, Juno JA, Burrell LM, Kent SJ, Dore GJ. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022. https://doi.org/10.1038/s41590-021-01113-x.

    Article 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-022-03751-7

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]