Connect with us

Health

A computational approach to design a polyvalent vaccine against human respiratory syncytial virus

A computational approach to design a polyvalent vaccine against human respiratory syncytial virus

 


  • Meng, J., Stobart, C. C., Hotard, A. L. & Moore, M. L. An overview of respiratory syncytial virus. PLoS Pathog. 10(4), e1004016. https://doi.org/10.1371/journal.ppat.1004016 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark, C. M. & Guerrero-Plata, A. Respiratory syncytial virus vaccine approaches: A current overview. Curr. Clin. Microbiol. Rep. 4(4), 202–207. https://doi.org/10.1007/s40588-017-0074-6 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Killikelly, A. et al. Respiratory syncytial virus: Overview of the respiratory syncytial virus vaccine candidate pipeline in Canada. Can. Commun. Dis. Rep. 46(4), 56. https://doi.org/10.14745/ccdr.v46i04a01 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandini, S., Biagi, C. & Lanari, M. Respiratory syncytial virus: The influence of serotype and genotype variability on clinical course of infection. Int. J. Mol. Sci. 18(8), 1717. https://doi.org/10.3390/ijms18081717 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bianchini, S. et al. Role of respiratory syncytial virus in pediatric pneumonia. Microorganisms. 8(12), 2048. https://doi.org/10.3390/microorganisms8122048 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agoti, C. N. et al. Genomic analysis of respiratory syncytial virus infections in households and utility in inferring who infects the infant. Sci. Rep. 9(1), 1–4. https://doi.org/10.1038/s41598-019-46509-w (2019).

    Article 
    CAS 

    Google Scholar
     

  • Karron, R. A. et al. Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. J. Infect. Dis. 176(6), 1428–1436. https://doi.org/10.1086/514138 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurwitz, J. L. Respiratory syncytial virus vaccine development. Expert Rev. Vaccines. 10(10), 1415–1433. https://doi.org/10.1586/erv.11.120 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, C., Drews, S. J. & Marchant, D. J. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment. Clin. Microbiol. Rev. 30(1), 277–319. https://doi.org/10.1128/CMR.00010-16 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jordan, R. et al. Antiviral efficacy of a respiratory syncytial virus (RSV) fusion inhibitor in a bovine model of RSV infection. Antimicrob. Agents Chemother. 59(8), 4889–4900. https://doi.org/10.1128/AAC.00487-15 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, P. L., Fearns, R. & Graham, B. S. Respiratory syncytial virus: Virology, reverse genetics, and pathogenesis of disease. In Challenges and Opportunities for Respiratory Syncytial Virus Vaccines 3–38 (Springer, 2013). https://doi.org/10.1007/978-3-642-38919-1_1.

    Chapter 

    Google Scholar
     

  • Lu, B., Ma, C. H., Brazas, R. & Jin, H. The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J. Virol. 76(21), 10776–10784. https://doi.org/10.1128/JVI.76.21.10776-10784.2002 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. T. et al. Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS ONE 16(6), e0253393. https://doi.org/10.1371/journal.pone.0253393 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobanov, M. Y., Bogatyreva, N. S. & Galzitskaya, O. V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 42(4), 623–628. https://doi.org/10.1134/S0026893308040195 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30(1), 70–82. https://doi.org/10.1002/pro.3943 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cell. Mol. Immunol. 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Trincado, J. L., Gomez-Perosanz, M. & Reche, P. A. Fundamentals and methods for T-and B-cell epitope prediction. J. Immunol. Res. https://doi.org/10.1155/2017/2680160 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Schaik, S. M. et al. Role of interferon gamma in the pathogenesis of primary respiratory syncytial virus infection in BALB/c mice. J. Med. Virol. 62(2), 257–266. https://doi.org/10.1002/1096-9071(200010)62:2%3c257::AID-JMV19%3e3.0.CO;2-M (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 1843(11), 2563–2582. https://doi.org/10.1016/j.bbamcr.2014.05.014 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Chang, H. D. & Radbruch, A. The pro-and anti-inflammatory potential of interleukin-12. Ann. N. Y. Acad. Sci. 1109(1), 40–46. https://doi.org/10.1196/annals.1398.006 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, M. A. & Hural, J. Functions of IL-4 and control of its expression. Crit. Rev. Immunol. 17(1), 1–32. https://doi.org/10.1615/critrevimmunol.v17.i1.10 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4+ T cells: Differentiation and functions. Clin. Dev. Immunol. https://doi.org/10.1155/2012/925135 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammadi, Y., Nezafat, N., Negahdaripour, M., Eskandari, S. & Zamani, M. In silico design and evaluation of a novel mRNA vaccine against BK virus: A reverse vaccinology approach. Immunol. Res. 29, 1–20. https://doi.org/10.1007/s12026-022-09351-3 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hajighahramani, N. et al. Computational design of a chimeric epitope-based vaccine to protect against Staphylococcus aureus infections. Mol. Cell Probes. 46, 101414. https://doi.org/10.1016/j.mcp.2019.06.004 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bagheri, A., Nezafat, N., Eslami, M., Ghasemi, Y. & Negahdaripour, M. Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. Infect. Genet. Evol. 95, 105084. https://doi.org/10.1016/j.meegid.2021.105084 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abinaya, R. V. & Viswanathan, P. Biotechnology-based therapeutics. In Translational Biotechnology 27–52 (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-821972-0.00019-8.

    Chapter 

    Google Scholar
     

  • Funderburg, N. et al. Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc. Natl. Acad. Sci. 104(47), 18631–18635. https://doi.org/10.1073/pnas.0702130104 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Judge, C. J. et al. HBD-3 induces NK cell activation, IFN-γ secretion and mDC dependent cytolytic function. Cell. Immunol. 297(2), 61–68. https://doi.org/10.1016/j.cellimm.2015.06.004 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negahdaripour, M. et al. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect. Genet. Evol. 58, 96–109. https://doi.org/10.1016/j.meegid.2017.12.008 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Štěpánová, S. & Kašička, V. Application of capillary electromigration methods for physicochemical measurements. In Capillary Electromigration Separation Methods 547–591 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809375-7.00024-1.

    Chapter 

    Google Scholar
     

  • Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, K. Y. & Yang, J. R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE https://doi.org/10.1371/journal.pone.0070166 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamasaki-Katagiri, N. et al. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia. Haemophilia 23(1), e8-17. https://doi.org/10.1111/hae.13107 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, D. B. & Dombkowski, A. A. Disulfide by design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinform. 14(1), 346. https://doi.org/10.1186/1471-2105-14-346 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dombkowski, A. A. & Crippen, G. M. Disulfide recognition in an optimized threading potential. Protein Eng. 13(10), 679–689. https://doi.org/10.1093/protein/13.10.679 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shental-Bechor, D. & Levy, Y. Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. Proc. Natl. Acad. Sci. 105(24), 8256–8261. https://doi.org/10.1073/pnas.0801340105 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojha, R. & Prajapati, V. K. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J. Cell. Physiol. https://doi.org/10.1002/jcp.30483 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarling, A. L. et al. Phosphorylated peptides are naturally processed and presented by major histocompatibility complex class I molecules in vivo. J. Exp. Med. 192(12), 1755–1762. https://doi.org/10.1084/jem.192.12.1755 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murawski, M. R. et al. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J. Virol. 83(3), 1492–1500. https://doi.org/10.1128/JVI.00671-08 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, S., Dolganiuc, A. & Szabo, G. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J. Leukoc. Biol. 82(3), 479–487. https://doi.org/10.1189/jlb.0207128 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Compton, T. et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77(8), 4588–4596. https://doi.org/10.1128/JVI.77.8.4588-4596.2003 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurt-Jones, E. A. et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci. 101(5), 1315–1320. https://doi.org/10.1073/pnas.0308057100 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, B., Sun, T., Yu, X. H., Yang, Y. X. & Yeo, A. E. The effects of TLR activation on T-cell development and differentiation. Clin. Dev. Immunol. https://doi.org/10.1155/2012/836485 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shey, R. A. et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep. 9(1), 1–18. https://doi.org/10.1038/s41598-019-40833-x (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carbone, A., Zinovyev, A. & Képes, F. Codon adaptation index as a measure of dominating codon bias. Bioinformatics 19, 2005–2015. https://doi.org/10.1093/bioinformatics/btg272 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 4. https://doi.org/10.1186/1471-2105-8-4 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Gasteiger, E. et al. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook 571–607 (Humana Press, 2005). https://doi.org/10.1385/1-59259-890-0:571.

    Chapter 

    Google Scholar
     

  • Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1006 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponomarenko, J. et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9(1), 1–8. https://doi.org/10.1186/1471-2105-9-514 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Bui, H. H., Sidney, J., Li, W., Fusseder, N. & Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinform. 8(1), 361. https://doi.org/10.1186/1471-2105-8-361 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dimitrov, I., Flower, D. R. & Doytchinova, I. AllerTOP-a server for in-silico prediction of allergens. In BMC Bioinformatics, vol. 14, no. 6, S4. (BioMed Central, 2013) https://doi.org/10.1186/1471-2105-14-S6-S4.

  • Dimitrov, I., Naneva, L., Doytchinova, I. & Bangov, I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krogh, A., Larsson, B., Von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhanda, S. K., Vir, P. & Raghava, G. P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct. 5(8), 30. https://doi.org/10.1186/1745-6150-8-30 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dhanda, S. K., Gupta, S., Vir, P. & Raghava, G. P. Prediction of IL4 inducing peptides. Clin. Dev. Immunol. https://doi.org/10.1155/2013/263952 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagpal, G. et al. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci. Rep. 17(7), 42851. https://doi.org/10.1038/srep42851 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bui, H. H. et al. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 17(7), 153. https://doi.org/10.1186/1471-2105-7-153 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Thomsen, M., Lundegaard, C., Buus, S., Lund, O. & Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics 65(9), 655–665. https://doi.org/10.1007/s00251-013-0714-9 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, J., Randall, A. Z., Sweredoski, M. J. & Baldi, P. SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res. 33(Web Server issue), W72–W76. https://doi.org/10.1093/nar/gki396 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R. & Warwicker, J. Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchan, D. W. & Jones, D. T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292(2), 195–202. https://doi.org/10.1006/jmbi.1999.3091 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garnier, J., Gibrat, J. F. & Robson, B. [32] GOR method for predicting protein secondary structure from amino acid sequence. In Methods in Enzymology Vol. 266 540–553 (Academic Press, 1996). https://doi.org/10.1016/S0076-6879(96)66034-0.

    Chapter 

    Google Scholar
     

  • Geourjon, C. & Deleage, G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Levin, J. M., Robson, B. & Garnier, J. An algorithm for secondary structure determination in proteins based on sequence similarity. FEBS Lett. 205(2), 303–308. https://doi.org/10.1016/0014-5793(86)80917-6 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511. https://doi.org/10.1038/nprot.2012.085 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S., Li, W., Zhang, R., Liu, S. & Xu, J. CoinFold: A web server for protein contact prediction and contact-assisted protein folding. Nucleic Acids Res. 44(W1), W361–W366. https://doi.org/10.1093/nar/gkw307 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko, J., Park, H., Heo, L. & Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40(W1), W294–W297. https://doi.org/10.1093/nar/gks493 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nugent, T., Cozzetto, D. & Jones, D. T. Evaluation of predictions in the CASP10 model refinement category. Proteins Struct. Funct. Bioinform. 82, 98–111. https://doi.org/10.1002/prot.24377 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Laskowski, R. A., MacArthur, M. W. & Thornton, J. M. PROCHECK: Validation of Protein-Structure Coordinates (2006).

  • Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl. Acids Res. 35(suppl_2), W407–W410. https://doi.org/10.1093/nar/gkm290 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dombkowski, A. A. Disulfide by Design™: A computational method for the rational design of disulfide bonds in proteins. Bioinformatics 19(14), 1852–1853. https://doi.org/10.1093/bioinformatics/btg231 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dombkowski, A. A., Sultana, K. Z. & Craig, D. B. Protein disulfide engineering. FEBS Lett. 588(2), 206–212. https://doi.org/10.1016/j.febslet.2013.11.024 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moin, A. T. et al. Immunoinformatics approach to design novel subunit vaccine against the Epstein–Barr virus. Microbiol. Spectr. 10(5), e0115122. https://doi.org/10.1128/spectrum.01151-22 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, M. T. N., Jonson, P. H. & Petersen, S. B. Amino acid neighbours and detailed conformational analysis of cysteines in proteins. Protein Eng. 12, 535–548. https://doi.org/10.1093/protein/12.7.535 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, R. & Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. In Pac Symp Biocomput. 310–322 (2002).

  • Steentoft, C. et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32(10), 1478–1488. https://doi.org/10.1038/emboj.2013.79 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blom, N., Gammeltoft, S. & Brunak, S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294(5), 1351–1362. https://doi.org/10.1006/jmbi.1999.3310 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozakov, D. et al. The ClusPro web server for protein-protein docking. Nat. Protoc. 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moin, A. T. et al. Computational designing of a novel subunit vaccine for human cytomegalovirus by employing the immunoinformatics framework. J. Biomol. Struct. Dyn. 41(3), 833–855. https://doi.org/10.1080/07391102.2021.2014969 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierce, B. G. et al. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30(12), 1771–1773. https://doi.org/10.1093/bioinformatics/btu097 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berendsen, H. J., van der Spoel, D. & van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8(9), 3257–3273. https://doi.org/10.1021/ct300400x (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanommeslaeghe, K. et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4), 671–690. https://doi.org/10.1002/jcc.21367 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zielkiewicz, J. Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J. Chem. Phys. 123(10), 104501. https://doi.org/10.1063/1.2018637 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101. https://doi.org/10.1063/1.2408420 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690. https://doi.org/10.1063/1.448118 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190. https://doi.org/10.1063/1.328693 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H (1997).

    Article 
    CAS 

    Google Scholar
     

  • Petersen, H. G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys. 103(9), 3668–3679. https://doi.org/10.1063/1.470043 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS ONE https://doi.org/10.1371/journal.pone.0009862 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castiglione, F., Mantile, F., De Berardinis, P. & Prisco, A. How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput. Math. Methods Med. https://doi.org/10.1155/2012/842329 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grote, A. et al. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33, W526–W531. https://doi.org/10.1093/nar/gki376 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, K. Y. & Yang, J. R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE 8(8), e70166. https://doi.org/10.1371/journal.pone.0070166 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, E. S., Lee, S. G., Lee, S. J. & Kim, E. Rapid detection of 6×-histidine-labeled recombinant proteins by immunochromatography using dye-labeled cellulose nanobeads. Biotech. Lett. 37(3), 627–632. https://doi.org/10.1007/s10529-014-1731-y (2015).

    Article 
    CAS 

    Google Scholar
     

  • GSL Biotech LLC. SnapGene [Computer software]. https://www.snapgene.com/ (2021).

  • Araf, Y. et al. Immunoinformatic design of a multivalent peptide vaccine against mucormycosis: Targeting FTR1 protein of major causative fungi. Front. Immunol. 13, 863234. https://doi.org/10.3389/fimmu.2022.863234 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940. https://doi.org/10.1006/jmbi.1999.2700 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathews, D. H., Turner, D. H. & Zuker, M. RNA secondary structure prediction. Curr. Protoc. Nucleic Acid Chem. 28(1), 11–12. https://doi.org/10.1002/0471142700.nc1102s28 (2007).

    Article 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-023-35309-y

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]