Connect with us

Health

Cardiovascular effects of the post-COVID-19 condition

Cardiovascular effects of the post-COVID-19 condition

 


  • Yuki, K., Fujiogi, M. & Koutsogiannaki, S. COVID-19 pathophysiology: a review. Clin. Immunol. 215, 108427 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023). This comprehensive review of long COVID highlights important underlying pathophysiology and includes detailed information on both cardiac and noncardiac effects of this condition.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA https://doi.org/10.1001/jama.2023.8823 (2023).

  • Bonilla, H. et al. Therapeutic trials for long COVID-19: a call to action from the interventions taskforce of the RECOVER initiative. Front. Immunol. 14, 1129459 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23, 210–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J. & Prescott, H. C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324, 782–793 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Long, B. et al. Clinical update on COVID-19 for the emergency clinician: presentation and evaluation. Am. J. Emerg. Med. 54, 46–57 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsampasian, V. et al. Risk factors associated with post-COVID-19 condition: a systematic review and meta-analysis. JAMA Intern. Med. 183, 566–580 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dessie, Z. G. & Zewotir, T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 21, 855 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundberg, D. J. et al. COVID-19 mortality by race and ethnicity in US metropolitan and nonmetropolitan areas, March 2020 to February 2022. JAMA Netw. Open 6, e2311098 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minhas, A. S. et al. The role of sex and inflammation in cardiovascular outcomes and mortality in COVID-19. Int. J. Cardiol. 337, 127–131 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenforde, M. W. et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network – United States, March–June 2020. MMWR Morb. Mortal Wkly Rep. 69, 993–998 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45, 100618 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, K. et al. COVID-19 associated vasculitis: a systematic review of case reports and case series. Ann. Med. Surg. 74, 103249 (2022).

    Article 

    Google Scholar
     

  • Long, B., Brady, W. J., Koyfman, A. & Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 38, 1504–1507 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, W., Liu, X., Bao, K. & Huang, C. Ischemic stroke associated with COVID-19: a systematic review and meta-analysis. J. Neurol. 269, 1731–1740 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. A clinical case definition of post-COVID-19 condition by a Delphi consensus. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (2021).

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022). This unique article utilized a large national database to highlight the heightened risk of several cardiovascular complications following COVID-19 infection, which helps frame the importance of a solid knowledge base in this topic for healthcare providers.

  • Gluckman, T. J.et al. 2022 ACC Expert Consensus Decision Pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 79, 1717–1756 (2022). This important expert consensus document discusses different phenotypes of post-COVID-19 condition cardiovascular disease and provides recommendations on screening for myocardial involvement.

    Article 
    PubMed 

    Google Scholar
     

  • Khan, M. S. et al. Cardiovascular implications of COVID-19 versus influenza infection: a review. BMC Med. 18, 403 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chimenti, C. et al. Intramyocyte detection of Epstein–Barr virus genome by laser capture microdissection in patients with inflammatory cardiomyopathy. Circulation 110, 3534–3539 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deumer, U.-S. et al. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): an overview. J. Clin. Med. 10, 4786 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. -Y., Ma, Y. -T., Zhang, J. -Y. & Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259–260 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raman, B., Bluemke, D. A., Lüscher, T. F. & Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 43, 1157–1172 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21, 319–329 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beyerstedt, S., Casaro, E. B. & Rangel, É. B. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 40, 905–919 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pretorius, E. et al. Persistent clotting protein pathology in long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osiaevi, I. et al. Persistent capillary rarefication in long COVID syndrome. Angiogenesis 26, 53–61 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, M. A. et al. Elevated vascular transformation blood biomarkers in long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol. Med. 28, 122 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proal, A. D. & VanElzakker, M. B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 12, 698169 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naveed, Z. et al. Association of COVID-19 infection with incident diabetes. JAMA Netw Open 6, e238866 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohiuddin Chowdhury, A. T. M. et al. Clinical characteristics and the long-term post-recovery manifestations of the COVID-19 patients—a prospective multicenter cross-sectional study. Front. Med. 8, 663670 (2021).

    Article 

    Google Scholar
     

  • Gyöngyösi, M. et al. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc. Res. 119, 336–356 (2023). This is a thorough Scientific Statement describing long COVID epidemiology, diagnosis, pathophysiology, and management with specific emphasis on the cardiovascular system.

    Article 
    PubMed 

    Google Scholar
     

  • Miglis, M. G. et al. A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 30, 449–451 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanjwal, K., Jamal, S., Kichloo, A. & Grubb, B. P. New-onset postural orthostatic tachycardia syndrome following coronavirus disease 2019 infection. J. Innov. Card. Rhythm Manag. 11, 4302–4304 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishibashi, Y., Yoneyama, K., Tsuchida, T. & Akashi, J. Y. Post-COVID-19 postural orthostatic tachycardia syndrome. Intern. Med. 60, 2345 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Sullivan, J. S., Lyne, A. & Vaughan, C. J. COVID-19-induced postural orthostatic tachycardia syndrome treated with ivabradine. BMJ Case Rep. 14, e243585 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schofield, J. R. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur. J. Case Rep. Intern. Med. 8, 002378 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, M. et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep. 3, 573–580 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blitshteyn, S. & Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 69, 205–211 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosco, J. & Titano, R. Severe post-COVID-19 dysautonomia: a case report. BMC Infect. Dis. 22, 214 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallukat, G. et al. Functional autoantibodies against G-protein-coupled receptors in patients with persistent long-COVID-19 symptoms. J. Transl. Autoimmun. 4, 100100 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buoite Stella, A. et al. Autonomic dysfunction in post-COVID patients with and witfhout neurological symptoms: a prospective multidomain observational study. J. Neurol. 269, 587–596 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shouman, K. et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin. Auton. Res. 31, 385–394 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campen, C. L. M. C., van, Rowe, P. C. & Visser, F. C. Orthostatic symptoms and reductions in cerebral blood flow in long-haul COVID-19 patients: similarities with myalgic encephalomyelitis/chronic fatigue syndrome. Medicina 58, 28 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Novak, P. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann. Neurol. 91, 367–379 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamal, S. M. et al. Prospective evaluation of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldokla, A. M. & Ali, S. T. Autonomic function testing in long-COVID syndrome patients with orthostatic intolerance. Auton. Neurosci. 241, 102997 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campen, C. L. M. Cvan & Visser, F. C. Long-haul COVID patients: prevalence of POTS are reduced but cerebral blood flow abnormalities remain abnormal with longer disease duration. Healthcare 10, 2105 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Kwan, A. C. et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 Infection. Nat. Cardiovasc. Res. 1, 1187–1194 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, T. H. & Azar, A. Autonomic nerve involvement in post-acute sequelae of SARS-CoV-2 syndrome (PASC). J. Clin. Med. 12, 73 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eslami, M. et al. Postural orthostatic tachycardia syndrome and orthostatic hypotension post COVID-19. Infect. Disord. Drug Targets 23, e100622205846 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hira, R. et al. Objective hemodynamic cardiovascular autonomic abnormalities in post-acute sequelae of COVID-19. Can. J. Cardiol. 39, 767–775 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zanin, A. et al. Parasympathetic autonomic dysfunction is more often evidenced than sympathetic autonomic dysfunction in fluctuating and polymorphic symptoms of ‘long-COVID’ patients. Sci. Rep. 13, 8251 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Hermosillo G, J. A. et al. Exaggerated blood pressure elevation in response to orthostatic challenge, a post-acute sequelae of SARS-CoV-2 infection (PASC) after hospitalization. Auton. Neurosci. 247, 103094 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. C. et al. Reproducibility of head-up tilt-table testing for eliciting susceptibility to neurally mediated syncope in patients without structural heart disease. Am. J. Cardiol. 69, 755–760 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavri, B. B., Ruskin, J. N. & Brooks, R. The yield of head-up tilt testing is not significantly increased by repeating the baseline test. Clin. Cardiol. 19, 494–496 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamarre-Cliche, M. & Cusson, J. The fainting patient: value of the head-upright tilt-table test in adult patients with orthostatic intolerance. CMAJ 164, 372–376 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbate, G. et al. Postural orthostatic tachycardia syndrome after COVID-19: a systematic review of therapeutic interventions. J. Cardiovasc. Pharmacol. 82, 23–31 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Low, P. A. et al. Comparison of the postural tachycardia syndrome (POTS) with orthostatic hypotension due to autonomic failure. J. Auton. Nerv. Syst. 50, 181–188 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, D. S. et al. Cardiac sympathetic dysautonomia in chronic orthostatic intolerance syndromes. Circulation 106, 2358–2365 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Bonyhay, I. & Freeman, R. Sympathetic nerve activity in response to hypotensive stress in the postural tachycardia syndrome. Circulation 110, 3193–3198 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Peltier, A. C. et al. Distal sudomotor findings in postural tachycardia syndrome. Clin. Auton. Res. 20, 93–99 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jacob, G. et al. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance. Circulation 99, 1706–1712 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haensch, C.-A., Tosch, M., Katona, I., Weis, J. & Isenmann, S. Small-fiber neuropathy with cardiac denervation in postural tachycardia syndrome. Muscle Nerve 50, 956–961 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, D. S. et al. Neurocirculatory abnormalities in chronic orthostatic intolerance. Circulation 111, 839–845 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Muenter Swift, N., Charkoudian, N., Dotson, R. M., Suarez, G. A. & Low, P. A. Baroreflex control of muscle sympathetic nerve activity in postural orthostatic tachycardia syndrome. Am. J. Physiol. Heart. Circ. Physiol. 289, H1226–H1233 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garland, E. M., Raj, S. R., Black, B. K., Harris, P. A. & Robertson, D. The hemodynamic and neurohumoral phenotype of postural tachycardia syndrome. Neurology 69, 790–798 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joseph, P. et al. Insights from invasive cardiopulmonary exercise testing of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Chest 160, 642–651 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shah, B. et al. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol. J. 22, 70–76 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques, K. C., Quaresma, J. A. S. & Falcão, L. F. M. Cardiovascular autonomic dysfunction in ‘Long COVID’: pathophysiology, heart rate variability, and inflammatory markers. Front. Cardiovasc. Med. 10, 1256512 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NIH National Library of Medicine. ClinicalTrials.gov. Efficacy and safety study of efgartigimod in adults with post-COVID-19 POTS. https://clinicaltrials.gov/ct2/show/NCT05633407

  • Lala, A. et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 76, 533–546 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kini, A. et al. Types of myocardial injury and mid-term outcomes in patients with COVID-19. Eur. Heart J. Qual. Care Clin. Outcomes 7, 438–446 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Metkus, T. S. et al. Myocardial Injury in severe COVID-19 compared with non-COVID-19 acute respiratory distress syndrome. Circulation 143, 553–565 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giustino, G. et al. Characterization of myocardial injury in patients with COVID-19. J. Am. Coll. Cardiol. 76, 2043–2055 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minhas, A. S. et al. Myocardial work efficiency, a novel measure of myocardial dysfunction, is reduced in COVID-19 patients and associated with in-hospital mortality. Front. Cardiovasc. Med. 8, 667721 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deitelzweig, S. et al. Thrombotic and bleeding events, mortality, and anticoagulant use among 546,656 hospitalized patients with COVID-19 in the United States: a retrospective cohort study. J. Thromb. Thrombolysis 53, 766–776 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, Z.-Y., Geng, Y.-J., Huang, J. & Qian, H.-Y. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur. J. Heart Fail. 22, 1994–2006 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petersen, S. E. et al. Cardiovascular magnetic resonance for patients with COVID-19. JACC Cardiovasc. Imaging 15, 685–699 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Goerlich, E. et al. Multimodality imaging for cardiac evaluation in patients with COVID-19. Curr. Cardiol. Rep. 23, 44 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kravchenko, D. et al. Cardiac MRI in patients with prolonged cardiorespiratory symptoms after mild to moderate COVID-19. Radiology 301, E419–E425 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Puntmann, V. O. et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat. Med. 28, 2117–2123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artico, J. et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: a prospective, multicenter, observational study. Circulation 147, 364–374 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giustino, G. et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC Focus Seminar. J. Am. Coll. Cardiol. 76, 2011–2023 (2020). This paper outlines in great detail the mechanisms of myocardial injury in COVID-19 and discusses the clinical impact of these complications.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, L. T. Myocarditis. N. Engl. J. Med. 360, 1526–1538 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trachtenberg, B. H. & Hare, J. M. Inflammatory cardiomyopathic syndromes. Circ. Res. 121, 803–818 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedrich, M. G. et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J. Am. Coll. Cardiol. 53, 1475–1487 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aretz, H. T. et al. Myocarditis. A histopathologic definition and classification. Am. J. Cardiovasc. Pathol. 1, 3–14 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Caforio, A. L. P. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648, 2648a–2648d (2013).

  • Boehmer, T. K. et al. Association between COVID-19 and myocarditis using hospital-based administrative data – United States, March 2020–January 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1228–1232 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halushka, M. K. & Vander Heide, R. S. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc. Pathol. 50, 107300 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, P. et al. Clinical characteristics of multisystem inflammatory syndrome in adults: a systematic review. JAMA Netw. Open 4, e2126456 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Centers for Disease Control and Prevention (CDC). Multisystem Inflammatory Syndrome in Adults (MIS-A) Case Definition and Information for Healthcare Providers (2023).

  • Rajpal, S. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 6, 116–118 (2021).

    PubMed 

    Google Scholar
     

  • Clark, D. E. et al. Cardiovascular magnetic resonance evaluation of soldiers after recovery from symptomatic SARS-CoV-2 infection: a case-control study of cardiovascular post-acute sequelae of SARS-CoV-2 infection (CV PASC). J. Cardiovasc. Magn. Reson. 23, 106 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peretto, G. et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J. Am. Coll. Cardiol. 75, 1046–1057 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Isakadze, N. et al. C-reactive protein elevation is associated With QTc interval prolongation in patients hospitalized with COVID-19. Front. Cardiovasc. Med. 9, 866146 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruberg, F. L. et al. Utilization of cardiovascular magnetic resonance (CMR) imaging for resumption of athletic activities following COVID-19 infection: an expert consensus document on behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention (CVRI) Leadership and endorsed by the Society for Cardiovascular Magnetic Resonance (SCMR). J. Cardiovasc. Magn. Reson. 24, 73 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendren, N. S., Grodin, J. L. & Drazner, M. H. Unique patterns of cardiovascular involvement in coronavirus disease-2019. J. Card. Fail. 26, 466–469 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, e263–e421 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Satoskar, M. A. et al. Improving risk prediction for pulmonary embolism in COVID-19 patients using echocardiography. Pulm. Circ. 12, e12036 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coromilas, E. J. et al. Worldwide survey of COVID-19-associated arrhythmias. Circ. Arrhythm. Electrophysiol. 14, e009458 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai, A. D., Boursiquot, B. C., Melki, L. & Wan, E. Y. Management of arrhythmias associated with COVID-19. Curr. Cardiol. Rep. 23, 2 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driggin, E. et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol. 75, 2352–2371 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goerlich, E. et al. Left atrial function in patients with coronavirus disease 2019 and its association with incident atrial fibrillation/flutter. J. Am. Soc. Echocardiogr. 34, 1106–1109 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixit, N. M., Churchill, A., Nsair, A. & Hsu, J. J. Post-acute COVID-19 syndrome and the cardiovascular system: what is known? Am. Heart J. Plus 5, 100025 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musikantow, D. R. et al. Atrial fibrillation in patients hospitalized with COVID-19: incidence, predictors, outcomes, and comparison to influenza. JACC Clin. Electrophysiol. 7, 1120–1130 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huseynov, A., Akin, I., Duerschmied, D. & Scharf, R. E. Cardiac arrhythmias in post-COVID syndrome: prevalence, pathology, diagnosis, and treatment. Viruses 15, 389 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ingul, C. B. et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19. J. Am. Heart Assoc. 11, e023473 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • National Institute for Health and Care Excellence. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management (NICE, 2021).

  • Centers for Disease Control and Prevention (CDC). Treatment of ME/CFS | Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (2021).

  • Wright, J., Astill, S. L. & Sivan, M. The relationship between physical activity and long COVID: a cross-sectional study. Int. J. Environ. Res. Public Health 19, 5093 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olshansky, B. et al. Postural orthostatic tachycardia syndrome (POTS): a critical assessment. Prog. Cardiovasc. Dis. 63, 263–270 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yancy, C. W. et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gulati, M. et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 144, e368–e454 (2021).

    PubMed 

    Google Scholar
     

  • Collet, J.-P. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42, 1289–1367 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Leitman, M. et al. The effect of hyperbaric oxygen therapy on myocardial function in post-COVID-19 syndrome patients: a randomized controlled trial. Sci. Rep. 13, 9473 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forshaw, D. et al. STIMULATE-ICP: a pragmatic, multi-centre, cluster randomised trial of an integrated care pathway with a nested, phase III, open label, adaptive platform randomised drug trial in individuals with Long COVID: a structured protocol. PLoS ONE 18, e0272472 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Y., Zhang, J., Wu, L. J., Zhang, Q. & Wang, Y. X. The epidemiology, diagnosis and prognosis of long-COVID. Biomed. Environ. Sci. 35, 1133–1139 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Han, Q., Zheng, B., Daines, L. & Sheikh, A. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens 11, 269 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peluso, M. J. et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19. Ann. Neurol. 91, 772–781 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galán, M. et al. Persistent overactive cytotoxic immune response in a Spanish cohort of individuals with long-COVID: identification of diagnostic biomarkers. Front. Immunol. 13, 848886 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esfandyarpour, R., Kashi, A., Nemat-Gorgani, M., Wilhelmy, J. & Davis, R. W. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc. Natl Acad. Sci. USA 116, 10250–10257 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Intern. Med. 183, 554–564 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of COVID-19: cohort study. BMJ 381, e074572 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s44161-023-00414-8

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]