Connect with us

Uncategorized

The new findings challenge traditional beliefs about the cause of earthquakes

The new findings challenge traditional beliefs about the cause of earthquakes

 


Credit: CC0 public domain

By taking a closer look at the geometric composition of the rocks from which earthquakes originate, researchers at Brown University are adding a new wrinkle to the long-held belief about what causes earthquakes in the first place.

This work, described in the journal Nature, reveals that the way fault networks are aligned plays a crucial role in determining where an earthquake occurs and how strong it is.

These findings challenge the traditional idea that it is the type of friction that occurs at these faults that primarily governs whether earthquakes occur or not, and could improve the current understanding of how earthquakes work.

“Our paper paints this very different kind of picture about why earthquakes happen,” said Victor Tsai, a geophysicist at Brown University and one of the paper's lead authors. “This has very important implications for where earthquakes can be expected to occur versus where earthquakes cannot be expected, and also for predicting where earthquakes will be most damaging.”

Fault lines are the visible boundaries on the planet's surface where the solid plates that make up Earth's lithosphere collide with each other. For decades, geophysicists have interpreted earthquakes to occur when stress builds up on faults to the point where the faults rapidly slide or break over each other, releasing pent-up stress in an action known as slip behavior, Tsai says.

The researchers hypothesized that the rapid slip and the intense ground movements that follow are the result of unstable friction that can occur at faults. In contrast, the idea is that when friction is stable, plates slide against each other slowly without an earthquake occurring. This steady, smooth movement is also known as crawling.

“People try to measure these frictional properties, like whether a fault zone has unstable friction or stable friction, and then, based on laboratory measurements of that, they try to predict whether or not an earthquake will happen there.” He said.

“Our findings suggest that it may be more important to look at the geometry of faults in these fault networks, because it may be the complex geometry of the structures around those boundaries that creates this unstable versus stable behavior.”

The geometry to consider includes complexities in the underlying rock structures such as bends, gaps, and steps. The study is based on mathematical modeling and study of fault zones in California using data from the US Geological Survey's Quaternary Faults Database and from the California Geological Survey.

The research team, which also includes Brown University graduate student Jaesuk Lee and geophysicist Greg Hirth, provides a more detailed example to illustrate how earthquakes occur. They say to imagine defects colliding with each other as having serrated teeth like the edge of a saw.

When there are fewer teeth or blunt teeth, rocks slide over each other more smoothly, allowing crawling. But when the rock structures in these faults are more complex and rough, these structures stick together and stick. When this happens, they increase the pressure, and eventually as they pull and push harder, they break, pulling apart and causing earthquakes.

The new study builds on previous work investigating why some earthquakes generate more ground motion than other earthquakes in different parts of the world, and sometimes even those of similar strength.

The study showed that the collision of blocks within a fault zone during an earthquake contributes significantly to the generation of high-frequency vibrations and raised the idea that subsurface geometric complexity may also play a role in where and why earthquakes occur.

Analyzing data from faults in California – which includes the well-known San Andreas Fault – the researchers found that fault zones with complex geometry underneath, meaning the structures there were not parallel, turned out to have stronger ground motions than those with less geometric complexity. Error zones. This also means that some of these areas will have stronger earthquakes, others will have weaker earthquakes, and some will have no earthquakes.

The researchers determined this based on the average imbalance of the errors they analyzed. This misalignment ratio measures how close the faults are in a given area and all go in the same direction versus going in different directions.

The analysis revealed that fault zones where faults are more oblique cause strike-slip attacks in the form of earthquakes. Fault zones where the fault geometry was more aligned facilitated smooth creep of the fault without earthquakes.

“Understanding how faults behave as a system is essential to understanding why and how earthquakes occur,” said Lee, the graduate student who led the work.

“Our research suggests that the complexity of the error network architecture is the key factor and creates meaningful connections between sets of independent observations and integrates them into a new framework.”

The researchers say more work needs to be done to fully validate the model, but this preliminary work suggests the idea is promising, especially since misalignment or misalignment is easier to measure than misalignment properties. If this work is valid, it could one day be incorporated into earthquake prediction models.

This remains a long way off at the moment, as researchers begin to determine how to build on the study.

“The most obvious thing that comes next is to try to go beyond California and see how this model holds up,” Tsai said. “This is potentially a new way to understand how earthquakes occur.”

More information: Victor Tsai, Fault network geometry affects earthquake friction behavior, Nature (2024). doi: 10.1038/s41586-024-07518-6. www.nature.com/articles/s41586-024-07518-6

Provided by Brown University

Citation: New findings challenge traditional beliefs about cause of earthquakes (2024, June 5) Retrieved June 6, 2024 from https://phys.org/news/2024-06-traditional-beliefs-earthquakes.html

This document is subject to copyright. Notwithstanding any fair dealing for the purpose of private study or research, no part may be reproduced without written permission. The content is provided for informational purposes only.

Sources

1/ https://Google.com/

2/ https://phys.org/news/2024-06-traditional-beliefs-earthquakes.html

The mention sources can contact us to remove/changing this article

What Are The Main Benefits Of Comparing Car Insurance Quotes Online

LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

ExBUlletin

to request, modification Contact us at Here or [email protected]