Connect with us

Health

Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice

Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice

 


  • Cairns, B. E. The influence of gender and sex steroids on craniofacial nociception. Headache 47, 319–324. https://doi.org/10.1111/j.1526-4610.2006.00708.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Haggman-Henrikson, B. et al. Increasing gender differences in the prevalence and chronification of orofacial pain in the population. Pain 161, 1768–1775. https://doi.org/10.1097/j.pain.0000000000001872 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S., Kramer, P. & Tao, F. Editorial: Mechanisms of orofacial pain and sex differences. Front. Integr. Neurosci. 15, 599580. https://doi.org/10.3389/fnint.2021.599580 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohaved, S. B. et al. Apical periodontitis-induced mechanical allodynia: A mouse model to study infection-induced chronic pain conditions. Mol. Pain 16, 1744806919900725. https://doi.org/10.1177/1744806919900725 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riley, J. L. 3rd. & Gilbert, G. H. Orofacial pain symptoms: An interaction between age and sex. Pain 90, 245–256. https://doi.org/10.1016/S0304-3959(00)00408-5 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Sessle, B. J. Chronic orofacial pain: Models, mechanisms, and genetic and related environmental influences. Int. J. Mol. Sci. 22(13), 7112. https://doi.org/10.3390/ijms22137112 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mecklenburg, J. et al. Transcriptomic sex differences in sensory neuronal populations of mice. Sci. Rep. 10, 15278. https://doi.org/10.1038/s41598-020-72285-z (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, M. et al. Prolactin receptor expression in mouse dorsal root ganglia neuronal subtypes is sex-dependent. J. Neuroendocrinol. 31, e12759. https://doi.org/10.1111/jne.12759 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavares-Ferreira, D. et al. Sex differences in nociceptor translatomes contribute to divergent prostaglandin signaling in male and female mice. Biol. Psychiatry 91, 129–140. https://doi.org/10.1016/j.biopsych.2020.09.022 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine. Neuron 110, 1806–1821. https://doi.org/10.1016/j.neuron.2022.03.003 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut https://doi.org/10.1136/gutjnl-2017-315631 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398. https://doi.org/10.1038/s41586-019-1900-1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, P., Arris, D., Grayson, M., Hung, C. N. & Ruparel, S. Characterization of sensory neuronal subtypes innervating mouse tongue. PLoS One 13, e0207069. https://doi.org/10.1371/journal.pone.0207069 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moayedi, Y., Duenas-Bianchi, L. F. & Lumpkin, E. A. Somatosensory innervation of the oral mucosa of adult and aging mice. Sci. Rep. 8, 9975. https://doi.org/10.1038/s41598-018-28195-2 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindquist, K. A. et al. Identification of trigeminal sensory neuronal types innervating masseter muscle. eNeuro 8(5), ENEURO.0176-21.2021. https://doi.org/10.1523/ENEURO.0176-21.2021 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abe, M. et al. Successful treatment with cyclosporin administration for persistent benign migratory glossitis. J. Dermatol. 34, 340–343. https://doi.org/10.1111/j.1346-8138.2007.00284.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Drage, L. A. & Rogers, R. S. 3rd. Clinical assessment and outcome in 70 patients with complaints of burning or sore mouth symptoms. Mayo Clin. Proc. 74, 223–228. https://doi.org/10.4065/74.3.223 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menni, S., Boccardi, D. & Crosti, C. Painful geographic tongue (benign migratory glossitis) in a child. J. Eur. Acad. Dermatol. Venereol. 18, 737–738. https://doi.org/10.1111/j.1468-3083.2004.01032.x (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller, M. K. & Kragelund, C. Randomized pilot study on probiotic effects on recurrent candidiasis in oral lichen planus patients. Oral Dis. https://doi.org/10.1111/odi.12858 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Marable, D. R. et al. Oral candidiasis following steroid therapy for oral lichen planus. Oral Dis. 22, 140–147. https://doi.org/10.1111/odi.12399 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramaniam, R., Klasser, G. D. & Delcanho, R. Separating oral burning from burning mouth syndrome: Unravelling a diagnostic enigma. Aust. Dent. J. 54, 293–299. https://doi.org/10.1111/j.1834-7819.2009.01153.x (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grinspan, D., Fernandez Blanco, G., Allevato, M. A. & Stengel, F. M. Burning mouth syndrome. Int. J. Dermatol. 34, 483–487 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaplin, J. M. & Morton, R. P. A prospective, longitudinal study of pain in head and neck cancer patients. Head Neck 21, 531–537 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epstein, J. B. & Stewart, K. H. Radiation therapy and pain in patients with head and neck cancer. Eur. J Cancer Part B Oral Oncol. 29B, 191–199 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Keefe, F. J., Manuel, G., Brantley, A. & Crisson, J. Pain in the head and neck cancer patient: Changes over treatment. Head Neck Surg. 8, 169–176 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saxena, A., Gnanasekaran, N. & Andley, M. An epidemiological study of prevalence of pain in head & neck cancers. Indian J. Med. Res. 102, 28–33 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Chodroff, L., Bendele, M., Valenzuela, V., Henry, M. & Ruparel, S. EXPRESS: BDNF signaling contributes to oral cancer pain in a preclinical orthotopic rodent model. Mol. Pain 12, 174480691666684. https://doi.org/10.1177/1744806916666841 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Charalambous, M. et al. The effect of the use of thyme honey in minimizing radiation – induced oral mucositis in head and neck cancer patients: A randomized controlled trial. Eur. J. Oncol. Nurs. 34, 89–97. https://doi.org/10.1016/j.ejon.2018.04.003 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mercadante, S. et al. Prevalence of oral mucositis, dry mouth, and dysphagia in advanced cancer patients. Support. Care Cancer 23, 3249–3255. https://doi.org/10.1007/s00520-015-2720-y (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ghurye, S. & McMillan, R. Orofacial pain – An update on diagnosis and management. Br. Dent. J. 223, 639–647. https://doi.org/10.1038/sj.bdj.2017.879 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaaskelainen, S. K. & Woda, A. Burning mouth syndrome. Cephalalgia 37, 627–647. https://doi.org/10.1177/0333102417694883 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Maria, O. M., Eliopoulos, N. & Muanza, T. Radiation-induced oral mucositis. Front. Oncol. 7, 89. https://doi.org/10.3389/fonc.2017.00089 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villa, A. & Sonis, S. T. Mucositis: Pathobiology and management. Curr. Opin. Oncol. 27, 159–164. https://doi.org/10.1097/CCO.0000000000000180 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. et al. Dimethyl sulfoxide prevents radiation-induced oral mucositis through facilitating DNA double-strand break repair in epithelial stem cells. Int. J. Radiat. Oncol. Biol. Phys. 102, 1577–1589. https://doi.org/10.1016/j.ijrobp.2018.07.2010 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuffari, L., Tesseroli de Siqueira, J. T., Nemr, K. & Rapaport, A. Pain complaint as the first symptom of oral cancer: A descriptive study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodont. 102, 56–61. https://doi.org/10.1016/j.tripleo.2005.10.041 (2006).

    Article 

    Google Scholar
     

  • Grayson, M. et al. Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation. Pain 163, 496–507. https://doi.org/10.1097/j.pain.0000000000002382 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayson, M., Furr, A. & Ruparel, S. Depiction of oral tumor-induced trigeminal afferent responses using single-fiber electrophysiology. Sci. Rep. 9, 4574. https://doi.org/10.1038/s41598-019-39824-9 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruparel, S., Bendele, M., Wallace, A. & Green, D. Released lipids regulate transient receptor potential channel (TRP)-dependent oral cancer pain. Mol. Pain 11, 30. https://doi.org/10.1186/s12990-015-0016-3 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, Y. et al. Advances in head and neck cancer pain. J. Dent. Res. 101(9), 1025–1033. https://doi.org/10.1177/00220345221088527 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, J. E. et al. Prevalence of pain in head and neck cancer out-patients. J. Laryngol. Otol. 124, 767–773. https://doi.org/10.1017/S002221511000040X (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, D. K. & Schmidt, B. L. Orofacial pain onset predicts transition to head and neck cancer. Pain 152, 1206–1209. https://doi.org/10.1016/j.pain.2011.02.009 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheff, N. N. et al. Granulocyte-colony stimulating factor-induced neutrophil recruitment provides opioid-mediated endogenous anti-nociception in female mice with oral squamous cell carcinoma. Front. Mol. Neurosci. 12, 217. https://doi.org/10.3389/fnmol.2019.00217 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebri, E., Kiss, A., Toth, F. & Hortobagyi, T. Female sex as an independent prognostic factor in the development of oral mucositis during autologous peripheral stem cell transplantation. Sci. Rep. 10, 15898. https://doi.org/10.1038/s41598-020-72592-5 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kusiak, A., Jereczek-Fossa, B. A., Cichonska, D. & Alterio, D. Oncological-therapy related oral mucositis as an interdisciplinary problem-literature review. Int. J. Environ. Res. Public Health 17, 2464. https://doi.org/10.3390/ijerph17072464 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmetzer, O. & Flörcken, A. Sex differences in the drug therapy for oncologic diseases. In Sex and Gender Differences in Pharmacology (ed. Regitz-Zagrosek, V.) 411–442 (Springer Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-30726-3_19.

    Chapter 

    Google Scholar
     

  • Scheff, N. N. et al. Neutrophil-mediated endogenous analgesia contributes to sex differences in oral cancer pain. Front. Integr. Neurosci. 12, 52. https://doi.org/10.3389/fnint.2018.00052 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connelly, S. T. & Schmidt, B. L. Evaluation of pain in patients with oral squamous cell carcinoma. J. Pain 5, 505–510. https://doi.org/10.1016/j.jpain.2004.09.002 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Horan, N. L. et al. The impact of tumor immunogenicity on cancer pain phenotype using syngeneic oral cancer mouse models. Front. Pain Res. (Lausanne) 3, 991725. https://doi.org/10.3389/fpain.2022.991725 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cramer, J. D., Johnson, J. T. & Nilsen, M. L. Pain in head and neck cancer survivors: Prevalence, predictors, and quality-of-life impact. Otolaryngol. Head Neck Surg. 159, 853–858. https://doi.org/10.1177/0194599818783964 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bueno, C. H., Pereira, D. D., Pattussi, M. P., Grossi, P. K. & Grossi, M. L. Gender differences in temporomandibular disorders in adult populational studies: A systematic review and meta-analysis. J. Oral Rehabil. 45, 720–729. https://doi.org/10.1111/joor.12661 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, M. K., Park, J., Asgar, J. & Ro, J. Y. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats. Mol. Pain 12, 174480691666852. https://doi.org/10.1177/1744806916668526 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Korczeniewska, O. A. et al. Differential gene expression in trigeminal ganglia of male and female rats following chronic constriction of the infraorbital nerve. Eur. J. Pain 22, 875–888. https://doi.org/10.1002/ejp.1174 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fried, K., Sessle, B. J. & Devor, M. The paradox of pain from tooth pulp: Low-threshold “algoneurons”?. Pain 152, 2685–2689. https://doi.org/10.1016/j.pain.2011.08.004 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michot, B., Lee, C. S. & Gibbs, J. L. TRPM8 and TRPA1 do not contribute to dental pulp sensitivity to cold. Sci. Rep. 8, 13198. https://doi.org/10.1038/s41598-018-31487-2 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvo, E. et al. Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion. Pain 161, 2592–2602. https://doi.org/10.1097/j.pain.0000000000001986 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheff, N. N. et al. Oral cancer induced TRPV1 sensitization is mediated by PAR2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci. Rep. 12, 4121. https://doi.org/10.1038/s41598-022-08005-6 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, N. H. et al. Legumain induces oral cancer pain by biased agonism of protease-activated receptor-2. J. Neurosci. 41, 193–210. https://doi.org/10.1523/JNEUROSCI.1211-20.2020 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Combes, T. W. et al. CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19. Immunother. Adv. 1, itab003. https://doi.org/10.1093/immadv/ltab003 (2021).

    Article 

    Google Scholar
     

  • Grabert, K. et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J. Immunol. 205, 3154–3166. https://doi.org/10.4049/jimmunol.2000835 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. H. et al. Complement C1q (C1qA, C1qB, and C1qC) may be a potential prognostic factor and an index of tumor microenvironment remodeling in osteosarcoma. Front. Oncol. 11, 642144. https://doi.org/10.3389/fonc.2021.642144 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. H. et al. The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol. Immunol. 5, 9–21. https://doi.org/10.1038/cmi.2008.2 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascarell, L. et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 10, 695–704. https://doi.org/10.1038/mi.2016.87 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blass, G., Mattson, D. L. & Staruschenko, A. The function of SH2B3 (LNK) in the kidney. Am. J. Physiol. Renal Physiol. 311, F682–F685. https://doi.org/10.1152/ajprenal.00373.2016 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Good-Jacobson, K. L. & Groom, J. R. Hhex drives B cells down memory lane. Nat. Immunol. 21, 968–969. https://doi.org/10.1038/s41590-020-0763-9 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, S. W. et al. Homeobox protein Hhex negatively regulates Treg cells by inhibiting Foxp3 expression and function. Proc. Natl. Acad. Sci. U. S. A. 116, 25790–25799. https://doi.org/10.1073/pnas.1907224116 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pine, G. M., Batugedara, H. M. & Nair, M. G. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 110, 442–451. https://doi.org/10.1016/j.cyto.2018.05.014 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X., Basbaum, A. & Guan, Z. Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Rep. 6, e883. https://doi.org/10.1097/PR9.0000000000000883 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagaev, I., Bokarewa, M., Tarkowski, A. & Smith, U. Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS One 1, e31. https://doi.org/10.1371/journal.pone.0000031 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhn, J. A. et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. Elife https://doi.org/10.7554/eLife.69056 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asano, S. et al. Microglia-astrocyte communication via C1q contributes to orofacial neuropathic pain associated with infraorbital nerve injury. Int. J. Mol. Sci. 21, 6834. https://doi.org/10.3390/ijms21186834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin, R. S. et al. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J. Neurosci. 27, 8699–8708. https://doi.org/10.1523/JNEUROSCI.2018-07.2007 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong, C. et al. Astrocytic and microglial interleukin-1beta mediates complement C1q-triggered orofacial mechanical allodynia. Neurosci. Res. https://doi.org/10.1016/j.neures.2022.10.009 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Millecamps, M., Sotocinal, S. G., Austin, J. S., Stone, L. S. & Mogil, J. S. Sex-specific effects of neuropathic pain on long-term pain behavior and mortality in mice. Pain 164, 577–586. https://doi.org/10.1097/j.pain.0000000000002742 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083. https://doi.org/10.1038/nn.4053 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barry, A. M., Zhao, N., Yang, X., Bennett, D. L. & Baskozos, G. Deep RNA-seq of male and female murine sensory neuron subtypes after nerve injury. Pain https://doi.org/10.1097/j.pain.0000000000002934 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, M. T., Gibson, S. & Hilari, K. Gender differences in health-related quality of life following total laryngectomy. Int. J. Lang Commun. Disord. 45, 287–294. https://doi.org/10.3109/13682820902994218 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Maciejewski, O. et al. Gender specific quality of life in patients with oral squamous cell carcinomas. Head Face Med. 6, 21. https://doi.org/10.1186/1746-160X-6-21 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, B. A. et al. Reliability and validity of the vanderbilt head and neck symptom survey: A tool to assess symptom burden in patients treated with chemoradiation. Head Neck 32, 26–37. https://doi.org/10.1002/hed.21143 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Pourel, N. et al. Quality of life in long-term survivors of oropharynx carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 54, 742–751. https://doi.org/10.1016/s0360-3016(02)02959-0 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Schliephake, H. & Jamil, M. U. Prospective evaluation of quality of life after oncologic surgery for oral cancer. Int. J. Oral Maxillofac. Surg. 31, 427–433. https://doi.org/10.1054/ijom.2001.0194 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singer, S. et al. Validation of the EORTC QLQ-C30 and EORTC QLQ-H&N35 in patients with laryngeal cancer after surgery. Head Neck 31, 64–76. https://doi.org/10.1002/hed.20938 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Dirix, P., Nuyts, S., Vander Poorten, V., Delaere, P. & Van den Bogaert, W. The influence of xerostomia after radiotherapy on quality of life: Results of a questionnaire in head and neck cancer. Support Care Cancer 16, 171–179. https://doi.org/10.1007/s00520-007-0300-5 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, J., Yamazaki, Y., Satoh, A., Notani, K. & Kitagawa, Y. Pain is associated with an endophytic cancer growth pattern in patients with oral squamous cell carcinoma before treatment. Odontology 98, 60–64. https://doi.org/10.1007/s10266-009-0107-6 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sato, J. et al. Pain may predict poor prognosis in patients with oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 111, 587–592. https://doi.org/10.1016/j.tripleo.2010.11.033 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Smit, M., Balm, A. J., Hilgers, F. J. & Tan, I. B. Pain as sign of recurrent disease in head and neck squamous cell carcinoma. Head Neck 23, 372–375. https://doi.org/10.1002/hed.1046 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammerlid, E. et al. A prospective study of quality of life in head and neck cancer patients. Part I: At diagnosis. Laryngoscope 111, 669–680. https://doi.org/10.1097/00005537-200104000-00021 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Infante-Cossio, P., Torres-Carranza, E., Cayuela, A., Gutierrez-Perez, J. L. & Gili-Miner, M. Quality of life in patients with oral and oropharyngeal cancer. Int. J. Oral Maxillofac. Surg. 38, 250–255. https://doi.org/10.1016/j.ijom.2008.12.001 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X. et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat. Commun. 11, 264. https://doi.org/10.1038/s41467-019-13839-2 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation. J. Mol. Histol. 49, 257–263. https://doi.org/10.1007/s10735-018-9765-4 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vit, J. P., Jasmin, L., Bhargava, A. & Ohara, P. T. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol. 2, 247–257. https://doi.org/10.1017/s1740925x07000427 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvo, E., Saraithong, P., Curtin, J. G., Janal, M. N. & Ye, Y. Reciprocal interactions between cancer and Schwann cells contribute to oral cancer progression and pain. Heliyon 5, e01223. https://doi.org/10.1016/j.heliyon.2019.e01223 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. S., Kim, S. H., Kang, J. G. & Ko, J. H. Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression. BMB Rep. 45, 623–628. https://doi.org/10.5483/bmbrep.2012.45.11.233 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brew, K. & Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803, 55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheff, N. N. et al. A disintegrin and metalloproteinase domain 17-epidermal growth factor receptor signaling contributes to oral cancer pain. Pain 161, 2330–2343. https://doi.org/10.1097/j.pain.0000000000001926 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knight, B. E. et al. TIMP-1 Attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms. Front. Mol. Neurosci. 12, 220. https://doi.org/10.3389/fnmol.2019.00220 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kofler, B. et al. Contribution of the galanin system to inflammation. Springerplus 4, L57. https://doi.org/10.1186/2193-1801-4-S1-L57 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koller, A. et al. Galanin is a potent modulator of cytokine and chemokine expression in human macrophages. Sci. Rep. 9, 7237. https://doi.org/10.1038/s41598-019-43704-7 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tofighi, R. et al. Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proc. Natl. Acad. Sci. U. S. A. 105, 2717–2722. https://doi.org/10.1073/pnas.0712300105 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fonseca-Rodrigues, D., Almeida, A. & Pinto-Ribeiro, F. A new gal in town: A Systematic review of the role of galanin and its receptors in pain. Cells 11, 839. https://doi.org/10.3390/cells11050839 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scanlon, C. S. et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat. Commun. 6, 6885. https://doi.org/10.1038/ncomms7885 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutherland, T. E. Chitinase-like proteins as regulators of innate immunity and tissue repair: Helpful lessons for asthma?. Biochem. Soc. Trans. 46, 141–151. https://doi.org/10.1042/BST20170108 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Starossom, S. C. et al. Chi3l3 induces oligodendrogenesis in an model of autoimmune neuroinflammation. Nat. Commun. 10, 217. https://doi.org/10.1038/s41467-018-08140-7 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, S. et al. Chi3l3: A potential key orchestrator of eosinophil recruitment in meningitis induced by Angiostrongylus cantonensis. J. Neuroinflam. 15, 31. https://doi.org/10.1186/s12974-018-1071-2 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ju, Y. Y. et al. CXCL10 and CXCR3 in the trigeminal ganglion contribute to trigeminal neuropathic pain in mice. J. Pain Res. 14, 41–51. https://doi.org/10.2147/JPR.S288292 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. L. et al. C-X-C motif chemokine 10 contributes to the development of neuropathic pain by increasing the permeability of the blood-spinal cord barrier. Front. Immunol. 11, 477. https://doi.org/10.3389/fimmu.2020.00477 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. CXCL10 controls inflammatory pain via opioid peptide-containing macrophages in electroacupuncture. PLoS One 9, e94696. https://doi.org/10.1371/journal.pone.0094696 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mailhot, B. et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J. Exp. Med. https://doi.org/10.1084/jem.20191430 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, K. & Torres, R. Role of interleukin-1beta during pain and inflammation. Brain Res. Rev. 60, 57–64. https://doi.org/10.1016/j.brainresrev.2008.12.020 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gajtko, A., Bakk, E., Hegedus, K., Ducza, L. & Hollo, K. IL-1beta induced cytokine expression by spinal astrocytes can play a role in the maintenance of chronic inflammatory pain. Front. Physiol. 11, 543331. https://doi.org/10.3389/fphys.2020.543331 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gui, W. S. et al. Interleukin-1beta overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol. Pain 12, 1744806916646784. https://doi.org/10.1177/1744806916646784 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urban, M. J. et al. Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice. ASN Neuro 2, e00040. https://doi.org/10.1042/AN20100015 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, B. et al. HSP70 alleviates spinal cord injury by activating the NF-kB pathway. J. Musculoskelet Neuronal. Interact. 21, 542–549 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, F. et al. Exogenous Hsp70 attenuates nitroglycerin-induced migraine-like symptoms in mice. J. Neurophysiol. 126, 1030–1037. https://doi.org/10.1152/jn.00314.2021 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, T. T. et al. Rescue of HSP70 in spinal neurons alleviates opioids-induced hyperalgesia via the suppression of endoplasmic reticulum stress in rodents. Front. Cell Dev. Biol. 8, 269. https://doi.org/10.3389/fcell.2020.00269 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goncalves Dos Santos, G., Delay, L., Yaksh, T. L. & Corr, M. Neuraxial cytokines in pain states. Front. Immunol. 10, 3061. https://doi.org/10.3389/fimmu.2019.03061 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalpachidou, T., Riehl, L., Schopf, C. L., Ucar, B. & Kress, M. Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 163, S79–S98. https://doi.org/10.1097/j.pain.0000000000002737 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solis-Castro, O. O., Wong, N. & Boissonade, F. M. Chemokines and pain in the trigeminal system. Front. Pain Res. (Lausanne) 2, 689314. https://doi.org/10.3389/fpain.2021.689314 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X. & White, K. E. Fibroblast growth factor 23 and its receptors. Ther. Apher. Dial. 9, 308–312. https://doi.org/10.1111/j.1744-9987.2005.00287.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fukumoto, S. Physiological regulation and disorders of phosphate metabolism–pivotal role of fibroblast growth factor 23. Intern. Med. 47, 337–343. https://doi.org/10.2169/internalmedicine.47.0730 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Czaya, B. & Faul, C. The role of fibroblast growth factor 23 in inflammation and anemia. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20174195 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suvannasankha, A. et al. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget 6, 19647–19660 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181. https://doi.org/10.1038/nprot.2014.006 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hovhannisyan, A. H. et al. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci. Rep. 11, 17813. https://doi.org/10.1038/s41598-021-97084-y (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruparel, S., Green, D., Chen, P. & Hargreaves, K. M. The cytochrome P450 inhibitor, ketoconazole, inhibits oxidized linoleic acid metabolite-mediated peripheral inflammatory pain. Mol. Pain 8, 73. https://doi.org/10.1186/1744-8069-8-73 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41598-023-40380-6

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]