Health
Sex-dependent differences in the genomic profile of lingual sensory neurons in naïve and tongue-tumor bearing mice
Cairns, B. E. The influence of gender and sex steroids on craniofacial nociception. Headache 47, 319–324. https://doi.org/10.1111/j.1526-4610.2006.00708.x (2007).
Haggman-Henrikson, B. et al. Increasing gender differences in the prevalence and chronification of orofacial pain in the population. Pain 161, 1768–1775. https://doi.org/10.1097/j.pain.0000000000001872 (2020).
Liu, S., Kramer, P. & Tao, F. Editorial: Mechanisms of orofacial pain and sex differences. Front. Integr. Neurosci. 15, 599580. https://doi.org/10.3389/fnint.2021.599580 (2021).
Mohaved, S. B. et al. Apical periodontitis-induced mechanical allodynia: A mouse model to study infection-induced chronic pain conditions. Mol. Pain 16, 1744806919900725. https://doi.org/10.1177/1744806919900725 (2020).
Riley, J. L. 3rd. & Gilbert, G. H. Orofacial pain symptoms: An interaction between age and sex. Pain 90, 245–256. https://doi.org/10.1016/S0304-3959(00)00408-5 (2001).
Sessle, B. J. Chronic orofacial pain: Models, mechanisms, and genetic and related environmental influences. Int. J. Mol. Sci. 22(13), 7112. https://doi.org/10.3390/ijms22137112 (2021).
Mecklenburg, J. et al. Transcriptomic sex differences in sensory neuronal populations of mice. Sci. Rep. 10, 15278. https://doi.org/10.1038/s41598-020-72285-z (2020).
Patil, M. et al. Prolactin receptor expression in mouse dorsal root ganglia neuronal subtypes is sex-dependent. J. Neuroendocrinol. 31, e12759. https://doi.org/10.1111/jne.12759 (2019).
Tavares-Ferreira, D. et al. Sex differences in nociceptor translatomes contribute to divergent prostaglandin signaling in male and female mice. Biol. Psychiatry 91, 129–140. https://doi.org/10.1016/j.biopsych.2020.09.022 (2022).
Yang, L. et al. Human and mouse trigeminal ganglia cell atlas implicates multiple cell types in migraine. Neuron 110, 1806–1821. https://doi.org/10.1016/j.neuron.2022.03.003 (2022).
Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut https://doi.org/10.1136/gutjnl-2017-315631 (2018).
Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398. https://doi.org/10.1038/s41586-019-1900-1 (2020).
Wu, P., Arris, D., Grayson, M., Hung, C. N. & Ruparel, S. Characterization of sensory neuronal subtypes innervating mouse tongue. PLoS One 13, e0207069. https://doi.org/10.1371/journal.pone.0207069 (2018).
Moayedi, Y., Duenas-Bianchi, L. F. & Lumpkin, E. A. Somatosensory innervation of the oral mucosa of adult and aging mice. Sci. Rep. 8, 9975. https://doi.org/10.1038/s41598-018-28195-2 (2018).
Lindquist, K. A. et al. Identification of trigeminal sensory neuronal types innervating masseter muscle. eNeuro 8(5), ENEURO.0176-21.2021. https://doi.org/10.1523/ENEURO.0176-21.2021 (2021).
Abe, M. et al. Successful treatment with cyclosporin administration for persistent benign migratory glossitis. J. Dermatol. 34, 340–343. https://doi.org/10.1111/j.1346-8138.2007.00284.x (2007).
Drage, L. A. & Rogers, R. S. 3rd. Clinical assessment and outcome in 70 patients with complaints of burning or sore mouth symptoms. Mayo Clin. Proc. 74, 223–228. https://doi.org/10.4065/74.3.223 (1999).
Menni, S., Boccardi, D. & Crosti, C. Painful geographic tongue (benign migratory glossitis) in a child. J. Eur. Acad. Dermatol. Venereol. 18, 737–738. https://doi.org/10.1111/j.1468-3083.2004.01032.x (2004).
Keller, M. K. & Kragelund, C. Randomized pilot study on probiotic effects on recurrent candidiasis in oral lichen planus patients. Oral Dis. https://doi.org/10.1111/odi.12858 (2018).
Marable, D. R. et al. Oral candidiasis following steroid therapy for oral lichen planus. Oral Dis. 22, 140–147. https://doi.org/10.1111/odi.12399 (2016).
Balasubramaniam, R., Klasser, G. D. & Delcanho, R. Separating oral burning from burning mouth syndrome: Unravelling a diagnostic enigma. Aust. Dent. J. 54, 293–299. https://doi.org/10.1111/j.1834-7819.2009.01153.x (2009).
Grinspan, D., Fernandez Blanco, G., Allevato, M. A. & Stengel, F. M. Burning mouth syndrome. Int. J. Dermatol. 34, 483–487 (1995).
Chaplin, J. M. & Morton, R. P. A prospective, longitudinal study of pain in head and neck cancer patients. Head Neck 21, 531–537 (1999).
Epstein, J. B. & Stewart, K. H. Radiation therapy and pain in patients with head and neck cancer. Eur. J Cancer Part B Oral Oncol. 29B, 191–199 (1993).
Keefe, F. J., Manuel, G., Brantley, A. & Crisson, J. Pain in the head and neck cancer patient: Changes over treatment. Head Neck Surg. 8, 169–176 (1986).
Saxena, A., Gnanasekaran, N. & Andley, M. An epidemiological study of prevalence of pain in head & neck cancers. Indian J. Med. Res. 102, 28–33 (1995).
Chodroff, L., Bendele, M., Valenzuela, V., Henry, M. & Ruparel, S. EXPRESS: BDNF signaling contributes to oral cancer pain in a preclinical orthotopic rodent model. Mol. Pain 12, 174480691666684. https://doi.org/10.1177/1744806916666841 (2016).
Charalambous, M. et al. The effect of the use of thyme honey in minimizing radiation – induced oral mucositis in head and neck cancer patients: A randomized controlled trial. Eur. J. Oncol. Nurs. 34, 89–97. https://doi.org/10.1016/j.ejon.2018.04.003 (2018).
Mercadante, S. et al. Prevalence of oral mucositis, dry mouth, and dysphagia in advanced cancer patients. Support. Care Cancer 23, 3249–3255. https://doi.org/10.1007/s00520-015-2720-y (2015).
Ghurye, S. & McMillan, R. Orofacial pain – An update on diagnosis and management. Br. Dent. J. 223, 639–647. https://doi.org/10.1038/sj.bdj.2017.879 (2017).
Jaaskelainen, S. K. & Woda, A. Burning mouth syndrome. Cephalalgia 37, 627–647. https://doi.org/10.1177/0333102417694883 (2017).
Maria, O. M., Eliopoulos, N. & Muanza, T. Radiation-induced oral mucositis. Front. Oncol. 7, 89. https://doi.org/10.3389/fonc.2017.00089 (2017).
Villa, A. & Sonis, S. T. Mucositis: Pathobiology and management. Curr. Opin. Oncol. 27, 159–164. https://doi.org/10.1097/CCO.0000000000000180 (2015).
Yang, C. et al. Dimethyl sulfoxide prevents radiation-induced oral mucositis through facilitating DNA double-strand break repair in epithelial stem cells. Int. J. Radiat. Oncol. Biol. Phys. 102, 1577–1589. https://doi.org/10.1016/j.ijrobp.2018.07.2010 (2018).
Cuffari, L., Tesseroli de Siqueira, J. T., Nemr, K. & Rapaport, A. Pain complaint as the first symptom of oral cancer: A descriptive study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodont. 102, 56–61. https://doi.org/10.1016/j.tripleo.2005.10.041 (2006).
Grayson, M. et al. Oral squamous cell carcinoma-released brain-derived neurotrophic factor contributes to oral cancer pain by peripheral tropomyosin receptor kinase B activation. Pain 163, 496–507. https://doi.org/10.1097/j.pain.0000000000002382 (2022).
Grayson, M., Furr, A. & Ruparel, S. Depiction of oral tumor-induced trigeminal afferent responses using single-fiber electrophysiology. Sci. Rep. 9, 4574. https://doi.org/10.1038/s41598-019-39824-9 (2019).
Ruparel, S., Bendele, M., Wallace, A. & Green, D. Released lipids regulate transient receptor potential channel (TRP)-dependent oral cancer pain. Mol. Pain 11, 30. https://doi.org/10.1186/s12990-015-0016-3 (2015).
Ye, Y. et al. Advances in head and neck cancer pain. J. Dent. Res. 101(9), 1025–1033. https://doi.org/10.1177/00220345221088527 (2022).
Williams, J. E. et al. Prevalence of pain in head and neck cancer out-patients. J. Laryngol. Otol. 124, 767–773. https://doi.org/10.1017/S002221511000040X (2010).
Lam, D. K. & Schmidt, B. L. Orofacial pain onset predicts transition to head and neck cancer. Pain 152, 1206–1209. https://doi.org/10.1016/j.pain.2011.02.009 (2011).
Scheff, N. N. et al. Granulocyte-colony stimulating factor-induced neutrophil recruitment provides opioid-mediated endogenous anti-nociception in female mice with oral squamous cell carcinoma. Front. Mol. Neurosci. 12, 217. https://doi.org/10.3389/fnmol.2019.00217 (2019).
Gebri, E., Kiss, A., Toth, F. & Hortobagyi, T. Female sex as an independent prognostic factor in the development of oral mucositis during autologous peripheral stem cell transplantation. Sci. Rep. 10, 15898. https://doi.org/10.1038/s41598-020-72592-5 (2020).
Kusiak, A., Jereczek-Fossa, B. A., Cichonska, D. & Alterio, D. Oncological-therapy related oral mucositis as an interdisciplinary problem-literature review. Int. J. Environ. Res. Public Health 17, 2464. https://doi.org/10.3390/ijerph17072464 (2020).
Schmetzer, O. & Flörcken, A. Sex differences in the drug therapy for oncologic diseases. In Sex and Gender Differences in Pharmacology (ed. Regitz-Zagrosek, V.) 411–442 (Springer Berlin Heidelberg, 2012). https://doi.org/10.1007/978-3-642-30726-3_19.
Scheff, N. N. et al. Neutrophil-mediated endogenous analgesia contributes to sex differences in oral cancer pain. Front. Integr. Neurosci. 12, 52. https://doi.org/10.3389/fnint.2018.00052 (2018).
Connelly, S. T. & Schmidt, B. L. Evaluation of pain in patients with oral squamous cell carcinoma. J. Pain 5, 505–510. https://doi.org/10.1016/j.jpain.2004.09.002 (2004).
Horan, N. L. et al. The impact of tumor immunogenicity on cancer pain phenotype using syngeneic oral cancer mouse models. Front. Pain Res. (Lausanne) 3, 991725. https://doi.org/10.3389/fpain.2022.991725 (2022).
Cramer, J. D., Johnson, J. T. & Nilsen, M. L. Pain in head and neck cancer survivors: Prevalence, predictors, and quality-of-life impact. Otolaryngol. Head Neck Surg. 159, 853–858. https://doi.org/10.1177/0194599818783964 (2018).
Bueno, C. H., Pereira, D. D., Pattussi, M. P., Grossi, P. K. & Grossi, M. L. Gender differences in temporomandibular disorders in adult populational studies: A systematic review and meta-analysis. J. Oral Rehabil. 45, 720–729. https://doi.org/10.1111/joor.12661 (2018).
Chung, M. K., Park, J., Asgar, J. & Ro, J. Y. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats. Mol. Pain 12, 174480691666852. https://doi.org/10.1177/1744806916668526 (2016).
Korczeniewska, O. A. et al. Differential gene expression in trigeminal ganglia of male and female rats following chronic constriction of the infraorbital nerve. Eur. J. Pain 22, 875–888. https://doi.org/10.1002/ejp.1174 (2018).
Fried, K., Sessle, B. J. & Devor, M. The paradox of pain from tooth pulp: Low-threshold “algoneurons”?. Pain 152, 2685–2689. https://doi.org/10.1016/j.pain.2011.08.004 (2011).
Michot, B., Lee, C. S. & Gibbs, J. L. TRPM8 and TRPA1 do not contribute to dental pulp sensitivity to cold. Sci. Rep. 8, 13198. https://doi.org/10.1038/s41598-018-31487-2 (2018).
Salvo, E. et al. Peripheral nerve injury and sensitization underlie pain associated with oral cancer perineural invasion. Pain 161, 2592–2602. https://doi.org/10.1097/j.pain.0000000000001986 (2020).
Scheff, N. N. et al. Oral cancer induced TRPV1 sensitization is mediated by PAR2 signaling in primary afferent neurons innervating the cancer microenvironment. Sci. Rep. 12, 4121. https://doi.org/10.1038/s41598-022-08005-6 (2022).
Tu, N. H. et al. Legumain induces oral cancer pain by biased agonism of protease-activated receptor-2. J. Neurosci. 41, 193–210. https://doi.org/10.1523/JNEUROSCI.1211-20.2020 (2021).
Combes, T. W. et al. CSF1R defines the mononuclear phagocyte system lineage in human blood in health and COVID-19. Immunother. Adv. 1, itab003. https://doi.org/10.1093/immadv/ltab003 (2021).
Grabert, K. et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J. Immunol. 205, 3154–3166. https://doi.org/10.4049/jimmunol.2000835 (2020).
Chen, L. H. et al. Complement C1q (C1qA, C1qB, and C1qC) may be a potential prognostic factor and an index of tumor microenvironment remodeling in osteosarcoma. Front. Oncol. 11, 642144. https://doi.org/10.3389/fonc.2021.642144 (2021).
Lu, J. H. et al. The classical and regulatory functions of C1q in immunity and autoimmunity. Cell Mol. Immunol. 5, 9–21. https://doi.org/10.1038/cmi.2008.2 (2008).
Mascarell, L. et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 10, 695–704. https://doi.org/10.1038/mi.2016.87 (2017).
Blass, G., Mattson, D. L. & Staruschenko, A. The function of SH2B3 (LNK) in the kidney. Am. J. Physiol. Renal Physiol. 311, F682–F685. https://doi.org/10.1152/ajprenal.00373.2016 (2016).
Good-Jacobson, K. L. & Groom, J. R. Hhex drives B cells down memory lane. Nat. Immunol. 21, 968–969. https://doi.org/10.1038/s41590-020-0763-9 (2020).
Jang, S. W. et al. Homeobox protein Hhex negatively regulates Treg cells by inhibiting Foxp3 expression and function. Proc. Natl. Acad. Sci. U. S. A. 116, 25790–25799. https://doi.org/10.1073/pnas.1907224116 (2019).
Pine, G. M., Batugedara, H. M. & Nair, M. G. Here, there and everywhere: Resistin-like molecules in infection, inflammation, and metabolic disorders. Cytokine 110, 442–451. https://doi.org/10.1016/j.cyto.2018.05.014 (2018).
Yu, X., Basbaum, A. & Guan, Z. Contribution of colony-stimulating factor 1 to neuropathic pain. Pain Rep. 6, e883. https://doi.org/10.1097/PR9.0000000000000883 (2021).
Nagaev, I., Bokarewa, M., Tarkowski, A. & Smith, U. Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS One 1, e31. https://doi.org/10.1371/journal.pone.0000031 (2006).
Kuhn, J. A. et al. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. Elife https://doi.org/10.7554/eLife.69056 (2021).
Asano, S. et al. Microglia-astrocyte communication via C1q contributes to orofacial neuropathic pain associated with infraorbital nerve injury. Int. J. Mol. Sci. 21, 6834. https://doi.org/10.3390/ijms21186834 (2020).
Griffin, R. S. et al. Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J. Neurosci. 27, 8699–8708. https://doi.org/10.1523/JNEUROSCI.2018-07.2007 (2007).
Hong, C. et al. Astrocytic and microglial interleukin-1beta mediates complement C1q-triggered orofacial mechanical allodynia. Neurosci. Res. https://doi.org/10.1016/j.neures.2022.10.009 (2022).
Millecamps, M., Sotocinal, S. G., Austin, J. S., Stone, L. S. & Mogil, J. S. Sex-specific effects of neuropathic pain on long-term pain behavior and mortality in mice. Pain 164, 577–586. https://doi.org/10.1097/j.pain.0000000000002742 (2023).
Sorge, R. E. et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18, 1081–1083. https://doi.org/10.1038/nn.4053 (2015).
Barry, A. M., Zhao, N., Yang, X., Bennett, D. L. & Baskozos, G. Deep RNA-seq of male and female murine sensory neuron subtypes after nerve injury. Pain https://doi.org/10.1097/j.pain.0000000000002934 (2023).
Lee, M. T., Gibson, S. & Hilari, K. Gender differences in health-related quality of life following total laryngectomy. Int. J. Lang Commun. Disord. 45, 287–294. https://doi.org/10.3109/13682820902994218 (2010).
Maciejewski, O. et al. Gender specific quality of life in patients with oral squamous cell carcinomas. Head Face Med. 6, 21. https://doi.org/10.1186/1746-160X-6-21 (2010).
Murphy, B. A. et al. Reliability and validity of the vanderbilt head and neck symptom survey: A tool to assess symptom burden in patients treated with chemoradiation. Head Neck 32, 26–37. https://doi.org/10.1002/hed.21143 (2010).
Pourel, N. et al. Quality of life in long-term survivors of oropharynx carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 54, 742–751. https://doi.org/10.1016/s0360-3016(02)02959-0 (2002).
Schliephake, H. & Jamil, M. U. Prospective evaluation of quality of life after oncologic surgery for oral cancer. Int. J. Oral Maxillofac. Surg. 31, 427–433. https://doi.org/10.1054/ijom.2001.0194 (2002).
Singer, S. et al. Validation of the EORTC QLQ-C30 and EORTC QLQ-H&N35 in patients with laryngeal cancer after surgery. Head Neck 31, 64–76. https://doi.org/10.1002/hed.20938 (2009).
Dirix, P., Nuyts, S., Vander Poorten, V., Delaere, P. & Van den Bogaert, W. The influence of xerostomia after radiotherapy on quality of life: Results of a questionnaire in head and neck cancer. Support Care Cancer 16, 171–179. https://doi.org/10.1007/s00520-007-0300-5 (2008).
Sato, J., Yamazaki, Y., Satoh, A., Notani, K. & Kitagawa, Y. Pain is associated with an endophytic cancer growth pattern in patients with oral squamous cell carcinoma before treatment. Odontology 98, 60–64. https://doi.org/10.1007/s10266-009-0107-6 (2010).
Sato, J. et al. Pain may predict poor prognosis in patients with oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 111, 587–592. https://doi.org/10.1016/j.tripleo.2010.11.033 (2011).
Smit, M., Balm, A. J., Hilgers, F. J. & Tan, I. B. Pain as sign of recurrent disease in head and neck squamous cell carcinoma. Head Neck 23, 372–375. https://doi.org/10.1002/hed.1046 (2001).
Hammerlid, E. et al. A prospective study of quality of life in head and neck cancer patients. Part I: At diagnosis. Laryngoscope 111, 669–680. https://doi.org/10.1097/00005537-200104000-00021 (2001).
Infante-Cossio, P., Torres-Carranza, E., Cayuela, A., Gutierrez-Perez, J. L. & Gili-Miner, M. Quality of life in patients with oral and oropharyngeal cancer. Int. J. Oral Maxillofac. Surg. 38, 250–255. https://doi.org/10.1016/j.ijom.2008.12.001 (2009).
Yu, X. et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nat. Commun. 11, 264. https://doi.org/10.1038/s41467-019-13839-2 (2020).
Liu, H. et al. Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation. J. Mol. Histol. 49, 257–263. https://doi.org/10.1007/s10735-018-9765-4 (2018).
Vit, J. P., Jasmin, L., Bhargava, A. & Ohara, P. T. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol. 2, 247–257. https://doi.org/10.1017/s1740925x07000427 (2006).
Salvo, E., Saraithong, P., Curtin, J. G., Janal, M. N. & Ye, Y. Reciprocal interactions between cancer and Schwann cells contribute to oral cancer progression and pain. Heliyon 5, e01223. https://doi.org/10.1016/j.heliyon.2019.e01223 (2019).
Kim, Y. S., Kim, S. H., Kang, J. G. & Ko, J. H. Expression level and glycan dynamics determine the net effects of TIMP-1 on cancer progression. BMB Rep. 45, 623–628. https://doi.org/10.5483/bmbrep.2012.45.11.233 (2012).
Brew, K. & Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 1803, 55–71. https://doi.org/10.1016/j.bbamcr.2010.01.003 (2010).
Scheff, N. N. et al. A disintegrin and metalloproteinase domain 17-epidermal growth factor receptor signaling contributes to oral cancer pain. Pain 161, 2330–2343. https://doi.org/10.1097/j.pain.0000000000001926 (2020).
Knight, B. E. et al. TIMP-1 Attenuates the development of inflammatory pain through MMP-dependent and receptor-mediated cell signaling mechanisms. Front. Mol. Neurosci. 12, 220. https://doi.org/10.3389/fnmol.2019.00220 (2019).
Kofler, B. et al. Contribution of the galanin system to inflammation. Springerplus 4, L57. https://doi.org/10.1186/2193-1801-4-S1-L57 (2015).
Koller, A. et al. Galanin is a potent modulator of cytokine and chemokine expression in human macrophages. Sci. Rep. 9, 7237. https://doi.org/10.1038/s41598-019-43704-7 (2019).
Tofighi, R. et al. Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proc. Natl. Acad. Sci. U. S. A. 105, 2717–2722. https://doi.org/10.1073/pnas.0712300105 (2008).
Fonseca-Rodrigues, D., Almeida, A. & Pinto-Ribeiro, F. A new gal in town: A Systematic review of the role of galanin and its receptors in pain. Cells 11, 839. https://doi.org/10.3390/cells11050839 (2022).
Scanlon, C. S. et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat. Commun. 6, 6885. https://doi.org/10.1038/ncomms7885 (2015).
Sutherland, T. E. Chitinase-like proteins as regulators of innate immunity and tissue repair: Helpful lessons for asthma?. Biochem. Soc. Trans. 46, 141–151. https://doi.org/10.1042/BST20170108 (2018).
Starossom, S. C. et al. Chi3l3 induces oligodendrogenesis in an model of autoimmune neuroinflammation. Nat. Commun. 10, 217. https://doi.org/10.1038/s41467-018-08140-7 (2019).
Wan, S. et al. Chi3l3: A potential key orchestrator of eosinophil recruitment in meningitis induced by Angiostrongylus cantonensis. J. Neuroinflam. 15, 31. https://doi.org/10.1186/s12974-018-1071-2 (2018).
Ju, Y. Y. et al. CXCL10 and CXCR3 in the trigeminal ganglion contribute to trigeminal neuropathic pain in mice. J. Pain Res. 14, 41–51. https://doi.org/10.2147/JPR.S288292 (2021).
Li, H. L. et al. C-X-C motif chemokine 10 contributes to the development of neuropathic pain by increasing the permeability of the blood-spinal cord barrier. Front. Immunol. 11, 477. https://doi.org/10.3389/fimmu.2020.00477 (2020).
Wang, Y. et al. CXCL10 controls inflammatory pain via opioid peptide-containing macrophages in electroacupuncture. PLoS One 9, e94696. https://doi.org/10.1371/journal.pone.0094696 (2014).
Mailhot, B. et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J. Exp. Med. https://doi.org/10.1084/jem.20191430 (2020).
Ren, K. & Torres, R. Role of interleukin-1beta during pain and inflammation. Brain Res. Rev. 60, 57–64. https://doi.org/10.1016/j.brainresrev.2008.12.020 (2009).
Gajtko, A., Bakk, E., Hegedus, K., Ducza, L. & Hollo, K. IL-1beta induced cytokine expression by spinal astrocytes can play a role in the maintenance of chronic inflammatory pain. Front. Physiol. 11, 543331. https://doi.org/10.3389/fphys.2020.543331 (2020).
Gui, W. S. et al. Interleukin-1beta overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol. Pain 12, 1744806916646784. https://doi.org/10.1177/1744806916646784 (2016).
Urban, M. J. et al. Inhibiting heat-shock protein 90 reverses sensory hypoalgesia in diabetic mice. ASN Neuro 2, e00040. https://doi.org/10.1042/AN20100015 (2010).
Xu, B. et al. HSP70 alleviates spinal cord injury by activating the NF-kB pathway. J. Musculoskelet Neuronal. Interact. 21, 542–549 (2021).
Wu, F. et al. Exogenous Hsp70 attenuates nitroglycerin-induced migraine-like symptoms in mice. J. Neurophysiol. 126, 1030–1037. https://doi.org/10.1152/jn.00314.2021 (2021).
Lin, T. T. et al. Rescue of HSP70 in spinal neurons alleviates opioids-induced hyperalgesia via the suppression of endoplasmic reticulum stress in rodents. Front. Cell Dev. Biol. 8, 269. https://doi.org/10.3389/fcell.2020.00269 (2020).
Goncalves Dos Santos, G., Delay, L., Yaksh, T. L. & Corr, M. Neuraxial cytokines in pain states. Front. Immunol. 10, 3061. https://doi.org/10.3389/fimmu.2019.03061 (2019).
Kalpachidou, T., Riehl, L., Schopf, C. L., Ucar, B. & Kress, M. Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 163, S79–S98. https://doi.org/10.1097/j.pain.0000000000002737 (2022).
Solis-Castro, O. O., Wong, N. & Boissonade, F. M. Chemokines and pain in the trigeminal system. Front. Pain Res. (Lausanne) 2, 689314. https://doi.org/10.3389/fpain.2021.689314 (2021).
Yu, X. & White, K. E. Fibroblast growth factor 23 and its receptors. Ther. Apher. Dial. 9, 308–312. https://doi.org/10.1111/j.1744-9987.2005.00287.x (2005).
Fukumoto, S. Physiological regulation and disorders of phosphate metabolism–pivotal role of fibroblast growth factor 23. Intern. Med. 47, 337–343. https://doi.org/10.2169/internalmedicine.47.0730 (2008).
Czaya, B. & Faul, C. The role of fibroblast growth factor 23 in inflammation and anemia. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20174195 (2019).
Suvannasankha, A. et al. FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells. Oncotarget 6, 19647–19660 (2015).
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181. https://doi.org/10.1038/nprot.2014.006 (2014).
Hovhannisyan, A. H. et al. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci. Rep. 11, 17813. https://doi.org/10.1038/s41598-021-97084-y (2021).
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106 (2010).
Ruparel, S., Green, D., Chen, P. & Hargreaves, K. M. The cytochrome P450 inhibitor, ketoconazole, inhibits oxidized linoleic acid metabolite-mediated peripheral inflammatory pain. Mol. Pain 8, 73. https://doi.org/10.1186/1744-8069-8-73 (2012).
Sources 2/ https://www.nature.com/articles/s41598-023-40380-6 The mention sources can contact us to remove/changing this article |
What Are The Main Benefits Of Comparing Car Insurance Quotes Online
LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos
to request, modification Contact us at Here or [email protected]