Connect with us

Health

Towards improved screening of toxins for Parkinson’s risk

Towards improved screening of toxins for Parkinson’s risk

 


  • Hirsch, E., Graybiel, A. M. & Agid, Y. A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Savica, R., Rocca, W. A. & Ahlskog, J. E. When does Parkinson disease start? Arch. Neurol. 67, 798–801 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y., Le, W. & Jankovic, J. Preclinical Biomarkers of Parkinson Disease. Arch. Neurol. 68, 22–30 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dauvilliers, Y. et al. REM sleep behaviour disorder. Nat. Rev. Dis. Prim. 4, 1–16 (2018).


    Google Scholar
     

  • Parkinson, J. An essay on the shaking palsy. 1817. Clin. Neurosci. 14, 223–236 (2002).


    Google Scholar
     

  • Morris, A. D. James Parkinson His Life and Times. James Park. His Life Times https://doi.org/10.1007/978-1-4615-9824-4 (1989).

  • Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. Neurol. 17, 939–953 (2018).

  • Dorsey, E. R. & Bloem, B. R. The Parkinson Pandemic—A Call to Action. JAMA Neurol. 75, 9–10 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ascherio, A. & Schwarzschild, M. A. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 15, 1257–1272 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects | OECD Guidelines for the Testing of Chemicals | OECD iLibrary. https://www.oecd-ilibrary.org/environment/oecd-guidelines-for-the-testing-of-chemicals-section-4-health-effects_20745788.

  • Meerman, J. J. et al. ScienceDirect Toxicology Neurodegeneration in a regulatory context: The need for speed. Curr. Opin. Toxicol. 33, 100383 (2023).

    Article 

    Google Scholar
     

  • Neurotoxicants, E. et al. Workshop on the EFSA NAMs Project on. 1–8 (2022).

  • Jacobs, M. N. et al. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 94, 2899–2923 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heusinkveld, H. et al. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit. Rev. Toxicol. 50, 725–739 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Goldman, S. M. Environmental toxins and Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol. 54, 141–164 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gatto, N. M., Cockburn, M., Bronstein, J., Manthripragada, A. D. & Ritz, B. Well-water consumption and Parkinson’s disease in rural California. Environ. Health Perspect. 117, 1912–1918 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hristina, V. D. et al. Environmental factors and Parkinson’s disease: A case-control study in Belgrade, Serbia. Int J. Neurosci. 120, 361–367 (2010).

    Article 

    Google Scholar
     

  • van der Mark, M. et al. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ. Health Perspect. 120, 340–347 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hancock, D. B. et al. Pesticide exposure and risk of Parkinson’s disease: A family-based case-control study. BMC Neurol. 8, 6 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pouchieu, C. et al. Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study. Int. J. Epidemiol. 47, 299–310 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, Y. et al. High pesticide exposure events and dream-enacting behaviors among US farmers. Mov. Disord. 37, 962–971 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanner, C. M. et al. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 119, 866–872 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CDC | Facts about Paraquat. https://emergency.cdc.gov/agent/paraquat/basics/facts.asp.

  • Hugh-Jones, M. E., Peele, R. H. & Wilson, V. L. Parkinson’s Disease in Louisiana, 1999–2012: Based on hospital primary discharge diagnoses, incidence, and risk in relation to local agricultural crops, pesticides, and aquifer recharge. Int. J. Environ. Res. Public Heal. 17, 1584 (2020).

    Article 

    Google Scholar
     

  • Pezzoli, G. & Cereda, E. Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80, 2035–2041 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Dhillon, A. S. et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J. Agromed. 13, 37–48 (2008).

    Article 

    Google Scholar
     

  • Schneider Medeiros, M., Reddy, P. S., Socal, P. M., Schumacher-Schuh, A. F. & Mello Rieder, C. R. Occupational pesticide exposure and the risk of death in patients with Parkinson’s disease: An observational study in southern Brazil. Environ. Heal. A Glob. Access Sci. Source 19, 1–8 (2020).


    Google Scholar
     

  • Li, S. et al. Proximity to residential and workplace pesticides application and the risk of progression of Parkinson’s diseases in Central California. Sci. Total Environ. 864, 160851 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Firestone, J. A. et al. Occupational factors and risk of Parkinson’s disease: A population-based case-control study. Am. J. Ind. Med. 53, 217–223 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weed, D. L. Does paraquat cause Parkinson’s disease? A review of reviews. Neurotoxicology 86, 180–184 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kline, E. M. et al. Genetic and environmental factors in Parkinson’s disease converge on immune function and inflammation. Mov. Disord. 36, 25–36 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ott, J. Association of genetic loci. Neurology 63, 955–958 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Goldman, S. M. et al. Genetic modification of the association of paraquat and Parkinson’s disease. Mov. Disord. 27, 1652–1658 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritz, B. R. et al. Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ. Health Perspect. 117, 964–969 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelada, S. N. P. et al. 5′ and 3′ region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson’s disease risk: a hypothesis-generating study. Hum. Mol. Genet 15, 3055–3062 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Tanner, C. M. et al. Occupation and risk of Parkinsonism: A multicenter case-control study. Arch. Neurol. 66, 1106–1113 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Fleming, L., Mann, J. B., Bean, J., Briggle, T. & Sanchez‐Ramos, J. R. Parkinson’s disease and brain levels of organochlorine pesticides. Ann. Neurol. 36, 100–103 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Corrigan, F. M., Lochgilphead, C. L., Shore, R. F., Daniel, S. E. & Mann, D. Organochlorine insecticides in substantia nigra in parkinson’s disease. J. Toxicol. Environ. Heal. – Part A 59, 229–234 (2000).

    Article 

    Google Scholar
     

  • Allen, R. H. et al. Breast cancer and pesticides in Hawaii: The need for further study. Environ. Health Perspect. 105, 679–683 (1997).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, R. J. Hawaiian milk contamination creates alarm. Science 217, 137–140 (1982).

    Article 
    PubMed 

    Google Scholar
     

  • Baker, D. B., Loo, S. & Barker, J. Evaluation of human exposure to the heptachlor epoxide contamination of milk in Hawaii. Hawaii Med. J. 50, 108-12–118 (1991).

    PubMed 

    Google Scholar
     

  • Ross, G. W. et al. Association of brain heptachlor epoxide and other organochlorine compounds with lewy pathology. Mov. Disord. 34, 228–235 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jayaraj, R., Megha, P. & Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 9, 90 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Egeghy, P. P. et al. The exposure data landscape for manufactured chemicals. Sci. Total Environ. 414, 159–166 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • EU Pesticides Database (v.2.2) Search Active substances, safeners and synergists. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/active-substances/index.cfm?event=search.as&s=3&a_from=&a_to=&e_from=&e_to=&additionalfilter__class_p1=&additionalfilter__class_p2=&string_tox_1=&string_tox_1=&string_tox_2=&string_tox_2=&string_tox_3=&string_tox_3=&string_tox_4=&string_tox_4=.

  • Barbeau, A., Roy, M., Bernier, G., Campanella, G. & Paris, S. Ecogenetics of Parkinson’s disease: Prevalence and environmental aspects in rural areas. Can. J. Neurol. Sci. / J. Can. des. Sci. Neurol. 14, 36–41 (1987).

    Article 

    Google Scholar
     

  • Liu, C. et al. A scientometric analysis and visualization of research on Parkinson’s disease associated with pesticide exposure. Front. Public Heal. 8, 91 (2020).

    Article 

    Google Scholar
     

  • Crofton, K. M. et al. Interlaboratory comparison of motor activity experiments: implications for neurotoxicological assessments. Neurotoxicol. Teratol. 13, 599–609 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Meyer, O. A., Tilson, H. A., Byrd, W. C. & Riley, M. T. A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav. Toxicol. 1, 233–236 (1979).

    PubMed 

    Google Scholar
     

  • Homberg, J. R. et al. The continued need for animals to advance brain research. Neuron 109, 2374–2379 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Höglinger, G. U. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491–502 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, M. E. & Bobrovskaya, L. An update on the rotenone models of Parkinson’s disease: Their ability to reproduce the features of clinical disease and model gene–environment interactions. Neurotoxicology 46, 101–116 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sherer, T. B., Betarbet, R., Kim, J. H. & Greenamyre, J. T. Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci. Lett. 341, 87–90 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Emmrich, J. V., Hornik, T. C., Neher, J. J. & Brown, G. C. Rotenone induces neuronal death by microglial phagocytosis of neurons. FEBS J. 280, 5030–5038 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782–790 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, P. et al. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain. Behav. Immun. 76, 61–73 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fang, Q. et al. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain. Behav. Immun. 92, 127–138 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cannon, J. R. et al. Expression of human E46K-mutated α-synuclein in BAC-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Exp. Neurol. 240, 44–56 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • George, S. et al. α-synuclein transgenic mice reveal compensatory increases in Parkinson’s disease-associated proteins DJ-1 and Parkin and have enhanced α-synuclein and PINK1 levels after rotenone treatment. J. Mol. Neurosci. 42, 243–254 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • McCormack, A. L. et al. Environmental risk factors and parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis. 10, 119–127 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Purisai, M. G. et al. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol. Dis. 25, 392–400 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Ossowska, K. et al. Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: Implications for Parkinson’s disease. Neuroscience 141, 2155–2165 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Kuter, K., Nowak, P., Gołembiowska, K. & Ossowska, K. Increased reactive oxygen species production in the brain after repeated low-dose pesticide paraquat exposure in rats. A comparison with peripheral tissues. Neurochem. Res. 35, 1121–1130 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • McCormack, A. L. et al. Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J. Neurochem. 93, 1030–1037 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Kuter, K. et al. Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res. 1155, 196–207 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, C., Ma, J., Li, B. & Sun, Y. Wnt1 silencing enhances neurotoxicity induced by paraquat and maneb in SH‑SY5Y cells. Exp. Ther. Med. 18, 3643–3649 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, S. F., Binienda, Z. K. & Imam, S. Z. Molecular aspects of dopaminergic neurodegeneration: Gene-environment interaction in Parkin dysfunction. Int. J. Environ. Res. Public Heal 8, 4702–4713 (2011).

    Article 

    Google Scholar
     

  • Song, C., Kanthasamy, A., Jin, H., Anantharam, V. & Kanthasamy, A. G. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 32, 586–595 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, N. et al. Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of circular RNAs. Environ. Pollut. 290, 117816 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Thiruchelvam, M., Brockel, B. J., Richfield, E. K., Baggs, R. B. & Cory-Slechta, D. A. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: Environmental risk factors for Parkinson’s disease? Brain Res. 873, 225–234 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Cicchetti, F. et al. Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol. Dis. 20, 360–371 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Qiu, X. et al. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse Parkinson’s disease model. Toxicol. Lett. 349, 1–11 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Neuroprotective effects of Polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice. Pharmacol. Biochem. Behav. 82, 345–352 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Anselmi, L. et al. Ingestion of subthreshold doses of environmental toxins induces ascending Parkinsonism in the rat. npj Park. Dis. 4, 1–10 (2018).


    Google Scholar
     

  • Martinez, B. A., Caldwell, K. A. & Caldwell, G. A. C. elegans as a model system to accelerate discovery for Parkinson disease. Curr. Opin. Genet Dev. 44, 102–109 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Doyle, J. M. & Croll, R. P. A critical review of zebrafish models of Parkinson’s disease. Front Pharm. 13, 835827 (2022).

    Article 

    Google Scholar
     

  • Ved, R. et al. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans. J. Biol. Chem. 280, 42655–42668 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Neurobiology of disease drosophila overexpressing Parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. https://doi.org/10.1523/JNEUROSCI.0218-07.2007 (2007).

  • Saini, N. et al. Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol. Dis. 40, 82–92 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Flinn, L. et al. Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain 132, 1613–1623 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Meulener, M. et al. Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr. Biol. 15, 1572–1577 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bai, Q., Mullett, S. J., Garver, J. A., Hinkle, D. A. & Burton, E. A. Zebrafish DJ-1 is evolutionarily conserved and expressed in dopaminergic neurons. Brain Res. 1113, 33–44 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Edson, A. J. et al. Dysregulation in the brain protein profile of zebrafish lacking the Parkinson’s disease-related protein DJ-1. Mol. Neurobiol. 56, 8306–8322 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Saha, S. et al. LRRK2 modulates vulnerability to mitochondrial dysfunction in caenorhabditis elegans. J. Neurosci. 29, 9210–9218 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolozin, B., Saha, S., Guillily, M., Ferree, A. & Riley, M. Investigating convergent actions of genes linked to familial Parkinson’s disease. Neurodegener. Dis. 5, 182–185 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol. Neurodegener. 3, 1–7 (2008).

    Article 

    Google Scholar
     

  • Ng, C.-H. et al. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in drosophila. J. Neurosci. 29, 11257–11262 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venderova, K. et al. Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum. Mol. Genet. 18, 4390–4404 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Sheng, D. et al. Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genet 6, e1000914 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prabhudesai, S. et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J. Neurosci. Res. 94, 717–735 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ortega-Arellano, H. F., Jimenez-Del-Rio, M. & Velez-Pardo, C. Melatonin increases life span, restores the locomotor activity, and reduces lipid peroxidation (LPO) in transgenic knockdown parkin drosophila melanogaster exposed to paraquat or paraquat/Iron. Neurotox. Res. 39, 1551–1563 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Vegh, C. et al. Combined ubisol-q10 and ashwagandha root extract target multiple biochemical mechanisms and reduces neurodegeneration in a paraquat-induced rat model of parkinson’s disease. Antioxidants 10, 563 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, E., Seifert, M. & Baumeister, R. Caenorhabditis elegans as a model system for Parkinson’s Disease. Neurodegener. Disord. 4, 199–217 (2007).

    Article 

    Google Scholar
     

  • van Ham, T. J. et al. C. elegans model identifies genetics modifiers of a-synuclein inclusion formation during aging. PLoS Genet 3, e1999927 (2008).


    Google Scholar
     

  • Harrington, A. J., Hamamichi, S., Caldwell, G. A. & Caldwell, K. A. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s Disease. Dev. Dyn. 239, 1282–1295 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wolozin, B., Gabel, C., Feree, A., Guillily, M. & Ebata, A. Watching worms whither: Modeling neurdegeneration in C. elegans. Prog. Mol. Biol. Transl. Sci. 100, 499–514 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaeta, A. L., Caldwell, K. A. & Caldwell, G. A. Found in translation: The utility of C. elegans alpha-synuclein models of Parkinson’s disease. Brain Sci. 9, 73 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chege, P. M. & McColl, G. Caenorhabditis elegans: a model to investigate oxidative stress and metal dyshomeostasis in Parkinson’s disease. Front. Aging Neurosci. 6, 89 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lasko, M. et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis leegans overexpressing human alpha-synuclein. J. Neronchem. 86, 165–172 (2003).

    Article 

    Google Scholar
     

  • Kuwahara, T. et al. Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J. Biol. Chem. 281, 334–340 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hughes, S. et al. Using a caenorhabditis elegans Parkinson’s disease model to assess disease progression and therapy efficiency. Pharmaceuticals 15, 512 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, J. F. et al. Delaying aging is neuroprotective in Parkinson’s disease: A genetic analysis in C. Elegans models. Parkinsons. Dis. 1, 15022 (2015).

    Article 

    Google Scholar
     

  • Hamamichi, S. et al. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc. Natl. Acad. Sci. USA 105, 728–733 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, L. J. et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis. Model Mech. 3, 194–208 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Sawin, E. R., Ranganathan, R. & Horvitz, H. R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26, 619–631 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Alavez, S. & Lithgow, G. J. Pharmacological maintenance of protein homeostasis could postpone age-related disease. Aging Cell 11, 187–191 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Jadiya, P. & Nazir, A. Environmental toxicants as extrinsic epigenetic factors for parkinsonism: studies employing transgenic C. elegans model. CNS Neurol. Disord. Drug Targets 11, 976–983 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • McVey, K. A. et al. Caenorhabditis elegans: An emerging model system for pesticideneurotoxicity. J. Environ. Anal. Toxicol. S4, 1 (2012).


    Google Scholar
     

  • Meyer, D. & Williams, P. L. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. J. Toxicol. Environ. Heal. B Crit. Rev. 17, 284–306 (2014).

    Article 

    Google Scholar
     

  • Zhou, S., Wang, Z. & Klaunig, J. E. Caenorhabditis elegans neuron degeneration and mitochondrial suppression caused by selected environmental chemicals. Int J. Biochem Mol. Biol. 4, 191–200 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Hunt, C. P. et al. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 9, e114459 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bora, S. et al. Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans. Toxicology 447, 152632 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Braungart, E., Gerlach, M., Riederer, P., Baumeister, R. & Hoener, M. C. Caenorhabditis elegans MPP+ model of Parkinson’s disease for high-throughput drug screenings. Neurodegener. Dis. 1, 175–183 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Mocko, J. B., Kern, A., Moosmann, B., Behl, C. & Hajieva, P. Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson’s disease. Neurobiol. Dis. 40, 120–129 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ali, S. J. & Rajini, P. S. Elicitation of dopaminergic features of Parkinson’s disease in C. elegans by monocrotophos, an organophosphorous insecticide. CNS Neurol. Disord. Drug Targets 11, 993–1000 (2012).

    PubMed 

    Google Scholar
     

  • Harrison Brody, A., Chou, E., Gray, J. M., Pokyrwka, N. J. & Raley-Susman, K. M. Mancozeb-induced behavioral deficits precede structural neural degeneration. Neurotoxicology 34, 74–81 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Maulik, M., Mitra, S., Bult-Ito, A., Taylor, B. E. & Vayndorf, E. M. Behavioral Phenotyping and Pathological Indicators of Parkinson’s Disease in C. elegans Models. Front Genet 8, 77 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagoshi, E. Drosophila Models of Sporadic Parkinson’s disease. Int. J. Mol. Sci. 19, 3343 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson’s disease. Nature 404, 394–398 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Bolus, H., Crocker, K., Boekhoff-Falk, G. & SChtarbonova, S. Modeling neurodegenerative disorders in drosophila melanogaster. Int. J. Mol. Sci. 21, 3055 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T., Song, B. & Lee, I.-S. Drosophila Glia: Models for human neurodevelopmental and neurodegenerative disorders. Int. J. Mol. Sci. 21, 4859 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maitra, U. & Ciesla, L. Using Drosophila as a platform for drug discovery from natural products in Parkinson’s disease. Medchemcomm 10, 867–879 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limmer, S., Weiler, A., Volkenhoff, A., Babatz, F. & Klambt, C. The Drosophila blood-brain barrier: development and function of a glial endothelium. Front. Neurosci. 8, 365 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coulom, H. & Birman, S. Chronic exposure to rotenone models sporadic Parkinson’s disease in drosophila melanogaster. J. Neurosci. 24, 10993–10998 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayajuddin, M. et al. Adult health and transition stage-specific rotenone-mediated Drosophila model of Parkinson’s disease: Impact on late-onset neurodegenerative disease models. Front Mol. Neurosci. 15, 896183 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonilla-Ramirez, L., Jimenez-Del-Rio, M. & Velez-Pardo, C. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: Implication in autosomal recessive juvenile Parkinsonism. Gene 512, 355–363 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ortega-Arellano, H. F., Jimenez-Del-Rio, M. & Velez-Pardo, C. Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: Implications for autosomic recessive juvenile parkinsonism. Neurotoxicology 60, 42–53 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Reiszadeh Jahromi, S., Ramesh, S. R., Finkelstein, D. I. & Haddadi, M. α -Synuclein E46K Mutation and Involvement of Oxidative Stress in a Drosophila Model of Parkinson’s Disease. Parkinsons. Dis. 2021, 6621507 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neves, P. F. R. et al. Age-related tolerance to paraquat-induced parkinsonism in Drosophila melanogaster. Toxicol. Lett. 361, 43–53 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Panula, P. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Disord. 40, 46–57 (2010).

    Article 

    Google Scholar
     

  • Strähle, U. et al. Zebrafish embryos as an alternative to animal experiments-a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33, 128–132 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kalueff, A. V., Echevarria, D. J. & Stewart, A. M. Gaining translational momentum: more zebrafish models for neuroscience research. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 55, 1–6 (2014).

    Article 

    Google Scholar
     

  • Panula, P., Sundvik, M. & Karlstedt, K. Developmental roles of brain histamine. Trends Neurosci. 37, 159–168 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Maximino, C. et al. Non-mammalian models in behavioral neuroscience: Consequences for biological psychiatry. Front. Behav. Neurosci. 9, 233 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razali, K. et al. The promise of the zebrafish model for Parkinson’s disease: Today’s science and tomorrow’s treatment. Front. Genet. 12, 655550 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noble, S., Godoy, R., Affaticati, P. & Ekker, M. Transgenic zebrafish expressing mcherry in the mitochondria of dopaminergic neurons. Zebrafish 12, 349–356 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hughes, G. L. et al. Machine learning discriminates a movement disorder in a zebrafish model of Parkinson’s disease. DMM Dis. Model. Mech. 13, dmm045815 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Matsui, H. & Takahashi, R. Parkinson’s disease pathogenesis from the viewpoint of small fish models. J. Neural Transm. 125, 25–33 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kalyn, M., Hua, K., Mohd Noor, S., Wong, C. E. D. & Ekker, M. Comprehensive analysis of neurotoxin-induced ablation of dopaminergic neurons in zebrafish larvae. Biomedicines 8, 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish. Neurotoxicology 58, 103–109 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nellore, J. & P, N. Paraquat exposure induces behavioral deficits in larval zebrafish during the window of dopamine neurogenesis. Toxicol. Rep. 2, 950–956 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. H., Souders, C. L. 2nd, Zhao, Y. H. & Martyniuk, C. J. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). Chemosphere 191, 106–117 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bortolotto, J. W. et al. Long-term exposure to paraquat alters behavioral parameters and dopamine levels in adult zebrafish (Danio rerio). Zebrafish 11, 142–153 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Nunes, M. E. et al. Chronic treatment with paraquat induces brain injury, changes in antioxidant defenses system, and modulates behavioral functions in zebrafish. Mol. Neurobiol. 54, 3925–3934 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Terron, A. et al. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch. Toxicol. 92, 41–82 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fujita, K. A. et al. Integrating pathways of parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 49, 88–102 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Harkati, D., Belaidi, S., Kerassa, A. & Gherraf, N. Molecular structure, substituent effect and physical-chemistry property relationship of indole derivatives. Quantum Matter 5, 36–44 (2015).

    Article 

    Google Scholar
     

  • Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nat 2018 5597715 559, 547–555 (2018).


    Google Scholar
     

  • Trisciuzzi, D. et al. Molecular docking for predictive toxicology. Methods Mol. Biol. 1800, 181–197 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sachana, M. Adverse outcome pathways and their role in revealing biomarkers. Biomarkers Toxicol. 163–170. https://doi.org/10.1016/B978-0-12-814655-2.00009-8 (2019).

  • Paul, K. C. et al. A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides. Nat. Commun. 14, 2803 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed, N. V. et al. Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods 203, 465–477 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pamies, D. et al. Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiol. Dis. 169, 105719 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo, J. et al. Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19, 248–257 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attene-Ramos, M. S. et al. The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discov. Today 18, 716–723 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burden, N. et al. Advancing the 3Rs in regulatory ecotoxicology: A pragmatic cross-sector approach. Integr. Environ. Assess. Manag. 9999, 1–5 (2015).


    Google Scholar
     

  • DeMicco, A., Cooper, K. R., Richardson, J. R. & White, L. A. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol. Sci. 113, 177–186 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gonçalves, Í. et al. Toxicity testing of pesticides in zebrafish-a systematic review on chemicals and associated toxicological endpoints. Environ. Sci. Pollut. Res Int 27, 10185–10204 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, S., Li, F., Zhou, T., Wang, G. & Li, Z. Caenorhabditis elegans as a useful model for studying aging mutations. Front. Endocrinol. (Lausanne) 11, 1–9 (2020).

    Article 

    Google Scholar
     

  • Boyd, W. A. et al. Developmental effects of the ToxCastTM phase I and phase II chemicals in caenorhabditis elegans and corresponding responses in Zebrafish, Rats, and Rabbits. Environ. Health Perspect. 124, 586–593 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cooper, J. F. & Van Raamsdonk, J. M. Modeling Parkinson’s disease in C. elegans. J. Parkinsons. Dis. 8, 17–32 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuwahara, T. et al. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans. Hum. Mol. Genet. 17, 2997–3009 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ruszkiewicz, J. A. et al. C. elegans as a model in developmental neurotoxicology. Toxicol. Appl. Pharmacol. 354, 126–135 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández‐Hernández, I., Scheenaard, E., Pollarolo, G. & Gonzalez, C. The translational relevance of Drosophila in drug discovery. EMBO Rep. 17, 471–472 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legradi, J., el Abdellaoui, N., van Pomeren, M. & Legler, J. Comparability of behavioural assays suing zebrafish larvae to assess neurotoxicity. Environ. Sci. Pollut. Res. Int. 22, 16277–16289 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Svendsen, C., Siang, P., Lister, L. J., Rice, A. & Spurgeon, D. J. Similarity, independence, or interaction for binary mixture effects of nerve toxicants for the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 29, 1182–1191 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Wittkowski, P. et al. Caenorhabditis elegans as a promising alternative model for environmental chemical mixture effect assessment-a comparative study. Environ. Sci. Technol. 53, 12725–12733 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, P., Liu, S. S., Xu, Y. Q., Wang, Y. & Wang, Z. J. Combined lethal toxicities of pesticides with similar structures to Caenorhabditis elegans are not necessarily concentration additives. Environ. Pollut. 286, 117207 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Homberg, J. R., Wöhr, M. & Alenina, N. Comeback of the Rat in biomedical research. ACS Chem. Neurosci. 8, 900–903 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zucca, F. A. et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol. 155, 96–119 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zucca, F. A. et al. Neuromelanins in brain aging and Parkinson’s disease: synthesis, structure, neuroinflammatory, and neurodegenerative role. IUBMB Life 75, 55–65 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Test No. 424: Neurotoxicity Study in Rodents. https://doi.org/10.1787/9789264071025-EN (1997).

  • Kyriakou, E. I., Nguyen, H. P., Homberg, J. R. & Van der Harst, J. E. Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approach-avoidance task: The light spot test. J. Neurosci. Methods 300, 48–58 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Grieco, F. et al. Measuring behavior in the home cage: Study design, applications, challenges, and perspectives. Front. Behav. Neurosci. 15, 219 (2021).

    Article 

    Google Scholar
     

  • Fleming, S. M. Mechanisms of Gene-Environment Interactions in Parkinson’s Disease. Curr. Environ. Heal Rep. 4, 192–199 (2017).

    Article 

    Google Scholar
     

  • Sources

    1/ https://Google.com/

    2/ https://www.nature.com/articles/s41531-023-00615-9

    The mention sources can contact us to remove/changing this article

    What Are The Main Benefits Of Comparing Car Insurance Quotes Online

    LOS ANGELES, CA / ACCESSWIRE / June 24, 2020, / Compare-autoinsurance.Org has launched a new blog post that presents the main benefits of comparing multiple car insurance quotes. For more info and free online quotes, please visit https://compare-autoinsurance.Org/the-advantages-of-comparing-prices-with-car-insurance-quotes-online/ The modern society has numerous technological advantages. One important advantage is the speed at which information is sent and received. With the help of the internet, the shopping habits of many persons have drastically changed. The car insurance industry hasn't remained untouched by these changes. On the internet, drivers can compare insurance prices and find out which sellers have the best offers. View photos The advantages of comparing online car insurance quotes are the following: Online quotes can be obtained from anywhere and at any time. Unlike physical insurance agencies, websites don't have a specific schedule and they are available at any time. Drivers that have busy working schedules, can compare quotes from anywhere and at any time, even at midnight. Multiple choices. Almost all insurance providers, no matter if they are well-known brands or just local insurers, have an online presence. Online quotes will allow policyholders the chance to discover multiple insurance companies and check their prices. Drivers are no longer required to get quotes from just a few known insurance companies. Also, local and regional insurers can provide lower insurance rates for the same services. Accurate insurance estimates. Online quotes can only be accurate if the customers provide accurate and real info about their car models and driving history. Lying about past driving incidents can make the price estimates to be lower, but when dealing with an insurance company lying to them is useless. Usually, insurance companies will do research about a potential customer before granting him coverage. Online quotes can be sorted easily. Although drivers are recommended to not choose a policy just based on its price, drivers can easily sort quotes by insurance price. Using brokerage websites will allow drivers to get quotes from multiple insurers, thus making the comparison faster and easier. For additional info, money-saving tips, and free car insurance quotes, visit https://compare-autoinsurance.Org/ Compare-autoinsurance.Org is an online provider of life, home, health, and auto insurance quotes. This website is unique because it does not simply stick to one kind of insurance provider, but brings the clients the best deals from many different online insurance carriers. In this way, clients have access to offers from multiple carriers all in one place: this website. On this site, customers have access to quotes for insurance plans from various agencies, such as local or nationwide agencies, brand names insurance companies, etc. "Online quotes can easily help drivers obtain better car insurance deals. All they have to do is to complete an online form with accurate and real info, then compare prices", said Russell Rabichev, Marketing Director of Internet Marketing Company. CONTACT: Company Name: Internet Marketing CompanyPerson for contact Name: Gurgu CPhone Number: (818) 359-3898Email: [email protected]: https://compare-autoinsurance.Org/ SOURCE: Compare-autoinsurance.Org View source version on accesswire.Com:https://www.Accesswire.Com/595055/What-Are-The-Main-Benefits-Of-Comparing-Car-Insurance-Quotes-Online View photos

    ExBUlletin

    to request, modification Contact us at Here or [email protected]